These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 28049949)
1. Differential Contribution of Nerve-Derived Noradrenaline to High K Ishida H; Saito SY; Hishinuma E; Ishikawa T Biol Pharm Bull; 2017; 40(1):56-60. PubMed ID: 28049949 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of Membrane Depolarization Involved in α Ishida H; Saito SY; Dohi N; Ishikawa T Biol Pharm Bull; 2019; 42(10):1741-1745. PubMed ID: 31582662 [TBL] [Abstract][Full Text] [Related]
3. Contribution of alpha-adrenoceptors to depolarization and contraction evoked by continuous asynchronous sympathetic nerve activity in rat tail artery. Brock JA; McLachlan EM; Rayner SE Br J Pharmacol; 1997 Apr; 120(8):1513-21. PubMed ID: 9113373 [TBL] [Abstract][Full Text] [Related]
4. Effects of nifedipine on potassium-induced contraction and noradrenaline release in cerebral and extracranial arteries from rabbit. Högestätt ED; Andersson KE; Edvinsson L Acta Physiol Scand; 1982 Feb; 114(2):283-96. PubMed ID: 6127868 [TBL] [Abstract][Full Text] [Related]
5. Influence of extracellular calcium and nifedipine on alpha 1- and alpha 2-adrenoceptor-mediated contractile responses in isolated rat and cat cerebral and mesenteric arteries. Skärby T; Högestätt ED; Andersson KE Acta Physiol Scand; 1985 Apr; 123(4):445-56. PubMed ID: 2859736 [TBL] [Abstract][Full Text] [Related]
7. Roles of extrajunctional receptors in the response of guinea-pig mesenteric and rat tail arteries to adrenergic nerves. Itoh T; Kitamura K; Kuriyama H J Physiol; 1983 Dec; 345():409-22. PubMed ID: 6141288 [TBL] [Abstract][Full Text] [Related]
8. Two mechanisms underlie the slow noradrenergic depolarization in the rat tail artery in vitro. Rummery NM; Brock JA Auton Neurosci; 2011 Jan; 159(1-2):45-50. PubMed ID: 20739228 [TBL] [Abstract][Full Text] [Related]
9. Acute and chronic captopril, but not prazosin or nifedipine, normalize alterations in adrenergic intracellular Ca2+ handling observed in the mesenteric arterial tree of spontaneously hypertensive rats. Miquel R; Gisbert R; Serna E; Perez-Vizcaino F; Anselmi E; Noguera MA; Ivorra MD; D'Ocon MP J Pharmacol Exp Ther; 2005 Apr; 313(1):359-67. PubMed ID: 15615866 [TBL] [Abstract][Full Text] [Related]
10. Pharmacological characterization of Ca2+ entry channels in endothelin-1-induced contraction of rat aorta using LOE 908 and SK&F 96365. Zhang XF; Iwamuro Y; Enoki T; Okazawa M; Lee K; Komuro T; Minowa T; Okamoto Y; Hasegawa H; Furutani H; Miwa S; Masaki T Br J Pharmacol; 1999 Jul; 127(6):1388-98. PubMed ID: 10455288 [TBL] [Abstract][Full Text] [Related]
11. Sympathetic neurotransmission in the rat testicular capsule: functional characterization and identification of mRNA encoding alpha1-adrenoceptor subtypes. Jurkiewicz NH; Caricati-Neto A; Verde LF; Avellar MC; Reuter HR; Jurkiewicz A Eur J Pharmacol; 2006 Aug; 543(1-3):141-50. PubMed ID: 16822496 [TBL] [Abstract][Full Text] [Related]
12. Broad-range TRP channel inhibitors (2-APB, flufenamic acid, SKF-96365) affect differently contraction of resistance and conduit femoral arteries of rat. Bencze M; Behuliak M; Vavřínová A; Zicha J Eur J Pharmacol; 2015 Oct; 765():533-40. PubMed ID: 26384458 [TBL] [Abstract][Full Text] [Related]
13. Comparison of the Ca2+ entry channels responsible for mechanical responses of guinea-pig aorta to noradrenaline and thapsigargin using SK&F 96365 and LOE 908. Tanaka Y; Imai T; Igarashi T; Takayanagi K; Otsuka K; Yamaki F; Tanaka H; Shigenobu K Naunyn Schmiedebergs Arch Pharmacol; 2000 Aug; 362(2):160-8. PubMed ID: 10961379 [TBL] [Abstract][Full Text] [Related]
14. Effects of vasopressin on the sympathetic contraction of rabbit ear artery during cooling. García-Villalón AL; Padilla J; Monge L; Fernández N; Sánchez MA; Gómez B; Diéguez G Br J Pharmacol; 1999 Feb; 126(3):785-93. PubMed ID: 10188992 [TBL] [Abstract][Full Text] [Related]
16. The evaluation of the N-type channel blocking properties of cilnidipine and other voltage-dependent calcium antagonists. Nap A; Mathy MJ; Balt JC; Pfaffendorf M; van Zwieten PA Fundam Clin Pharmacol; 2004 Jun; 18(3):309-19. PubMed ID: 15147282 [TBL] [Abstract][Full Text] [Related]
17. The involvement of intracellular Ca(2+) in 5-HT(1B/1D) receptor-mediated contraction of the rabbit isolated renal artery. Hill PB; Dora KA; Hughes AD; Garland CJ Br J Pharmacol; 2000 Jun; 130(4):835-42. PubMed ID: 10864890 [TBL] [Abstract][Full Text] [Related]
18. Separate activation of intracellular Ca2+ release, voltage-dependent and receptor-operated Ca2+ channels in the rat aorta. Huang Y; Ho IH Chin J Physiol; 1996; 39(1):1-8. PubMed ID: 8902298 [TBL] [Abstract][Full Text] [Related]
19. Angiotensin II increases nerve-evoked contractions in mouse tail artery by a T-type Ca(2+) channel-dependent mechanism. Reardon TF; Callaghan BP; Brock JA Eur J Pharmacol; 2015 Aug; 761():11-8. PubMed ID: 25934568 [TBL] [Abstract][Full Text] [Related]
20. Evidence that alpha(1B)-adrenoceptors are involved in noradrenaline-induced contractions of rat tail artery. Jähnichen S; Eltze M; Pertz HH Eur J Pharmacol; 2004 Mar; 488(1-3):157-67. PubMed ID: 15044047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]