These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28050624)

  • 1. Toxicity Assessment of Binary Metal Mixtures (Copper-Zinc) to Nitrification in Soilless Culture with the Extended Biotic Ligand Model.
    Liu A; Li J; Li M; Niu XY; Wang J
    Arch Environ Contam Toxicol; 2017 Feb; 72(2):312-319. PubMed ID: 28050624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the combined toxicity of binary metal mixtures (Cu-Ni and Zn-Ni) to wheat.
    Wang X; Luo X; Wang Q; Liu Y; Naidu R
    Ecotoxicol Environ Saf; 2020 Dec; 205():111334. PubMed ID: 32961486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extended biotic ligand model for predicting combined Cu-Zn toxicity to wheat (Triticum aestivum L.): Incorporating the effects of concentration ratio, major cations and pH.
    Wang X; Ji D; Chen X; Ma Y; Yang J; Ma J; Li X
    Environ Pollut; 2017 Nov; 230():210-217. PubMed ID: 28688297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating bioavailability into toxicity assessment of Cu-Ni, Cu-Cd, and Ni-Cd mixtures with the extended biotic ligand model and the WHAM-F(tox) approach.
    Qiu H; Vijver MG; He E; Liu Y; Wang P; Xia B; Smolders E; Versieren L; Peijnenburg WJ
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):19213-23. PubMed ID: 26250821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicity of copper and cadmium in combinations to Duckweed analyzed by the biotic ligand model.
    Hatano A; Shoji R
    Environ Toxicol; 2008 Jun; 23(3):372-8. PubMed ID: 18214895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing three approaches in extending biotic ligand models to predict the toxicity of binary metal mixtures (Cu-Ni, Cu-Zn and Cu-Ag) to lettuce (Lactuca sativa L.).
    Liu Y; Vijver MG; Peijnenburg WJ
    Chemosphere; 2014 Oct; 112():282-8. PubMed ID: 25048917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc toxicity to nitrification in soil and soilless culture can be predicted with the same biotic ligand model.
    Mertens J; Degryse F; Springael D; Smolders E
    Environ Sci Technol; 2007 Apr; 41(8):2992-7. PubMed ID: 17533869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling toxicity of binary metal mixtures (Cu(2+) -Ag(+) , Cu(2+) -Zn(2+) ) to lettuce, Lactuca sativa, with the biotic ligand model.
    Yen Le TT; Vijver MG; Jan Hendriks A; Peijnenburg WJ
    Environ Toxicol Chem; 2013 Jan; 32(1):137-43. PubMed ID: 23109233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended biotic ligand model for prediction of mixture toxicity of Cd and Pb using single metal toxicity data.
    Jho EH; An J; Nam K
    Environ Toxicol Chem; 2011 Jul; 30(7):1697-703. PubMed ID: 21538486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling acute toxicity of metal mixtures to wheat (Triticum aestivum L.) using the biotic ligand model-based toxic units method.
    Wu M; Wang X; Jia Z; De Schamphelaere K; Ji D; Li X; Chen X
    Sci Rep; 2017 Aug; 7(1):9443. PubMed ID: 28842695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing an application of a biotic ligand model to predict acute toxicity of metal mixtures to rainbow trout.
    Iwasaki Y; Kamo M; Naito W
    Environ Toxicol Chem; 2015 Apr; 34(4):754-60. PubMed ID: 25323464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using the Biotic Ligand Model framework to investigate binary metal interactions on the uptake of Ag, Cd, Cu, Ni, Pb and Zn in the freshwater snail Lymnaea stagnalis.
    Crémazy A; Brix KV; Wood CM
    Sci Total Environ; 2019 Jan; 647():1611-1625. PubMed ID: 30180365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of biotic ligand and toxicokinetic-toxicodynamic modeling to predict the accumulation and toxicity of metal mixtures to zebrafish larvae.
    Gao Y; Feng J; Han F; Zhu L
    Environ Pollut; 2016 Jun; 213():16-29. PubMed ID: 26874871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biotic ligand model for plants and metals: technical challenges for field application.
    Antunes PM; Berkelaar EJ; Boyle D; Hale BA; Hendershot W; Voigt A
    Environ Toxicol Chem; 2006 Mar; 25(3):875-82. PubMed ID: 16566174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals.
    Niyogi S; Wood CM
    Environ Sci Technol; 2004 Dec; 38(23):6177-92. PubMed ID: 15597870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a biotic ligand model for acute zinc toxicity to barley root elongation.
    Wang X; Li B; Ma Y; Hua L
    Ecotoxicol Environ Saf; 2010 Sep; 73(6):1272-8. PubMed ID: 20570355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between metal toxicity and biotic ligand binding affinities in aquatic and soil organisms: a review.
    Ardestani MM; van Straalen NM; van Gestel CA
    Environ Pollut; 2014 Dec; 195():133-47. PubMed ID: 25217851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An application of the biotic ligand model to predict the toxic effects of metal mixtures.
    Kamo M; Nagai T
    Environ Toxicol Chem; 2008 Jul; 27(7):1479-87. PubMed ID: 18260697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper toxicity to bioluminescent Nitrosomonas europaea in soil is explained by the free metal ion activity in pore water.
    Ore S; Mertens J; Brandt KK; Smolders E
    Environ Sci Technol; 2010 Dec; 44(23):9201-6. PubMed ID: 21047118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining a Standardized Batch Test with the Biotic Ligand Model to Predict Copper and Zinc Ecotoxicity in Soils.
    Tiberg C; Smolders E; Fröberg M; Gustafsson JP; Kleja DB
    Environ Toxicol Chem; 2022 Jun; 41(6):1540-1554. PubMed ID: 35262220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.