These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 28050760)
1. Identification of novel candidate genes for the inverted teat defect in sows using a genome-wide marker panel. Chalkias H; Jonas E; Andersson LS; Jacobson M; de Koning DJ; Lundeheim N; Lindgren G J Appl Genet; 2017 May; 58(2):249-259. PubMed ID: 28050760 [TBL] [Abstract][Full Text] [Related]
2. Genome-wide association QTL mapping for teat number in a purebred population of Duroc pigs. Arakawa A; Okumura N; Taniguchi M; Hayashi T; Hirose K; Fukawa K; Ito T; Matsumoto T; Uenishi H; Mikawa S Anim Genet; 2015 Oct; 46(5):571-5. PubMed ID: 26202474 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide association analyses identify known and novel loci for teat number in Duroc pigs using single-locus and multi-locus models. Zhuang Z; Ding R; Peng L; Wu J; Ye Y; Zhou S; Wang X; Quan J; Zheng E; Cai G; Huang W; Yang J; Wu Z BMC Genomics; 2020 May; 21(1):344. PubMed ID: 32380955 [TBL] [Abstract][Full Text] [Related]
4. QTL region-specific microarrays reveal differential expression of positional candidate genes of signaling pathways associated with the liability for the inverted teat defect. Chomwisarutkun K; Murani E; Brunner R; Ponsuksili S; Wimmers K Anim Genet; 2013 Apr; 44(2):139-48. PubMed ID: 22690698 [TBL] [Abstract][Full Text] [Related]
5. Association of parathyroid hormone-like hormone (PTHLH) and its receptor (PTHR1) with the number of functional and inverted teats in pigs. Tetzlaff S; Chomdej S; Jonas E; Ponsuksili S; Murani E; Phatsara C; Schellander K; Wimmers K J Anim Breed Genet; 2009 Jun; 126(3):237-41. PubMed ID: 19646152 [TBL] [Abstract][Full Text] [Related]
6. QTL for the heritable inverted teat defect in pigs. Jonas E; Schreinemachers HJ; Kleinwächter T; Un C; Oltmanns I; Tetzlaff S; Jennen D; Tesfaye D; Ponsuksili S; Murani E; Juengst H; Tholen E; Schellander K; Wimmers K Mamm Genome; 2008 Feb; 19(2):127-38. PubMed ID: 18219525 [TBL] [Abstract][Full Text] [Related]
7. Single-marker and haplotype-based genome-wide association studies for the number of teats in two heavy pig breeds. Bovo S; Ballan M; Schiavo G; Ribani A; Tinarelli S; Utzeri VJ; Dall'Olio S; Gallo M; Fontanesi L Anim Genet; 2021 Aug; 52(4):440-450. PubMed ID: 34096632 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide detection of multiple variants associated with teat number in French Yorkshire pigs. Lin D; Qiu Y; Zhou F; Li X; Deng S; Yang J; Chen Q; Cai G; Yang J; Wu Z; Zheng E BMC Genomics; 2024 Jul; 25(1):722. PubMed ID: 39054457 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide association analysis to identify SNP markers affecting teat numbers in an F2 intercross population between Landrace and Korean native pigs. Lee JB; Jung EJ; Park HB; Jin S; Seo DW; Ko MS; Cho IC; Lee JH; Lim HT Mol Biol Rep; 2014 Nov; 41(11):7167-73. PubMed ID: 25055975 [TBL] [Abstract][Full Text] [Related]
10. Microarray analysis reveals genes and functional networks relevant to the predisposition to inverted teats in pigs. Chomwisarutkun K; Murani E; Ponsuksili S; Wimmers K J Anim Sci; 2012 Jan; 90(1):1-15. PubMed ID: 21856889 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide association studies for the number of teats and teat asymmetry patterns in Large White pigs. Moscatelli G; Dall'Olio S; Bovo S; Schiavo G; Kazemi H; Ribani A; Zambonelli P; Tinarelli S; Gallo M; Bertolini F; Fontanesi L Anim Genet; 2020 Aug; 51(4):595-600. PubMed ID: 32363597 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide association study of conformation and milk yield in mixed-breed dairy goats. Mucha S; Mrode R; Coffey M; Kizilaslan M; Desire S; Conington J J Dairy Sci; 2018 Mar; 101(3):2213-2225. PubMed ID: 29290434 [TBL] [Abstract][Full Text] [Related]
13. Genome scanning reveals novel candidate genes for vertebral and teat number in the Beijing Black Pig. Niu N; Wang H; Shi G; Liu X; Liu H; Liu Q; Yang M; Wang L; Zhang L Anim Genet; 2021 Oct; 52(5):734-738. PubMed ID: 34192356 [TBL] [Abstract][Full Text] [Related]
14. A genome-wide association scan in pig identifies novel regions associated with feed efficiency trait. Sahana G; Kadlecová V; Hornshøj H; Nielsen B; Christensen OF J Anim Sci; 2013 Mar; 91(3):1041-50. PubMed ID: 23296815 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide QTL mapping for three traits related to teat number in a White Duroc x Erhualian pig resource population. Ding N; Guo Y; Knorr C; Ma J; Mao H; Lan L; Xiao S; Ai H; Haley CS; Brenig B; Huang L BMC Genet; 2009 Feb; 10():6. PubMed ID: 19226448 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide association study using a single-step approach for teat number in Duroc, Landrace and Yorkshire pigs in Korea. Park J; Do KT; Park KD; Lee HK Anim Genet; 2023 Dec; 54(6):743-751. PubMed ID: 37814452 [TBL] [Abstract][Full Text] [Related]
17. Genetic analysis of teat number in pigs reveals some developmental pathways independent of vertebra number and several loci which only affect a specific side. Rohrer GA; Nonneman DJ Genet Sel Evol; 2017 Jan; 49(1):4. PubMed ID: 28093083 [TBL] [Abstract][Full Text] [Related]
18. Genotyping by sequencing reveals a new locus for pig teat number. Wang L; Zhang Y; Zhang T; Zhang L; Yan H; Liu X; Wang L Anim Genet; 2017 Aug; 48(4):470-472. PubMed ID: 28370091 [TBL] [Abstract][Full Text] [Related]
19. Genome-wide detection of genetic loci and candidate genes for teat number and body conformation traits at birth in Chinese Sushan pigs. Zhou L; Zhao W; Fu Y; Fang X; Ren S; Ren J Anim Genet; 2019 Dec; 50(6):753-756. PubMed ID: 31475745 [TBL] [Abstract][Full Text] [Related]
20. QTL mapping for teat number in an Iberian-by-Meishan pig intercross. Rodríguez C; Tomás A; Alves E; Ramirez O; Arqué M; Muñoz G; Barragán C; Varona L; Silió L; Amills M; Noguera JL Anim Genet; 2005 Dec; 36(6):490-6. PubMed ID: 16293122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]