These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 28050773)
1. The effect of chronic intermittent hypoxia on respiratory sensitivity to morphine in rats. Wu J; Li P; Wu X Sleep Breath; 2017 Mar; 21(1):227-233. PubMed ID: 28050773 [TBL] [Abstract][Full Text] [Related]
2. Chronic intermittent hypoxia decreases pain sensitivity and increases the expression of HIF1α and opioid receptors in experimental rats. Wu J; Li P; Wu X; Chen W Sleep Breath; 2015 May; 19(2):561-8. PubMed ID: 25108706 [TBL] [Abstract][Full Text] [Related]
3. Effects of genistein and estrogen on the genioglossus in rats exposed to chronic intermittent hypoxia may be HIF-1α dependent. Zhou J; Liu Y Oral Dis; 2013 Oct; 19(7):702-11. PubMed ID: 23294197 [TBL] [Abstract][Full Text] [Related]
4. Effect of NADPH oxidase inhibitor apocynin on the expression of hypoxia-induced factor-1α and endothelin-1 in rat carotid body exposed to chronic intermittent hypoxia. Liu X; Deng Y; Shang J; Yang XH; Liu K; Liu HG; Xu YJ J Huazhong Univ Sci Technolog Med Sci; 2013 Apr; 33(2):178-184. PubMed ID: 23592126 [TBL] [Abstract][Full Text] [Related]
5. [Effect of chronic intermittent hypoxia on the expression of fractalkine in rat liver]. Li Y; Wang Y; Yang Y; Luo Y; Chen P Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2013 Oct; 38(10):984-90. PubMed ID: 24164882 [TBL] [Abstract][Full Text] [Related]
6. Insulin resistance is associated with tissue-specific regulation of HIF-1α and HIF-2α during mild chronic intermittent hypoxia. Sacramento JF; Ribeiro MJ; Rodrigues T; Guarino MP; Diogo LN; Seiça R; Monteiro EC; Matafome P; Conde SV Respir Physiol Neurobiol; 2016 Jul; 228():30-8. PubMed ID: 26993367 [TBL] [Abstract][Full Text] [Related]
7. [Endarterium injury and the related pathway in chronic intermittent hypoxia rats]. Su X; Peng S; He R; Hu C; He J; Pan P Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2013 Jul; 38(7):676-80. PubMed ID: 23908077 [TBL] [Abstract][Full Text] [Related]
8. Damage of Inner Ear Sensory Hair Cells via Mitochondrial Loss in a Murine Model of Sleep Apnea With Chronic Intermittent Hypoxia. Seo YJ; Ju HM; Lee SH; Kwak SH; Kang MJ; Yoon JH; Kim CH; Cho HJ Sleep; 2017 Sep; 40(9):. PubMed ID: 28934520 [TBL] [Abstract][Full Text] [Related]
9. Electrophysiological properties of laryngeal motoneurones in rats submitted to chronic intermittent hypoxia. Moraes DJ; Machado BH J Physiol; 2015 Feb; 593(3):619-34. PubMed ID: 25433075 [TBL] [Abstract][Full Text] [Related]
10. Atrial arrhythmias and autonomic dysfunction in rats exposed to chronic intermittent hypoxia. Bober SL; Ciriello J; Jones DL Am J Physiol Heart Circ Physiol; 2018 Jun; 314(6):H1160-H1168. PubMed ID: 29424572 [TBL] [Abstract][Full Text] [Related]
11. Intermittent hypoxia in utero damages postnatal growth and cardiovascular function in rats. Chen L; Zadi ZH; Zhang J; Scharf SM; Pae EK J Appl Physiol (1985); 2018 Apr; 124(4):821-830. PubMed ID: 29357521 [TBL] [Abstract][Full Text] [Related]
13. Down-regulation of hypoxia inducible factor-1alpha: a possible explanation for the protective effects of estrogen on genioglossus fatigue resistance. Jia SS; Liu YH Eur J Oral Sci; 2010 Apr; 118(2):139-44. PubMed ID: 20487002 [TBL] [Abstract][Full Text] [Related]
14. Heterozygous HIF-1alpha deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. Peng YJ; Yuan G; Ramakrishnan D; Sharma SD; Bosch-Marce M; Kumar GK; Semenza GL; Prabhakar NR J Physiol; 2006 Dec; 577(Pt 2):705-16. PubMed ID: 16973705 [TBL] [Abstract][Full Text] [Related]
15. Age protects from harmful effects produced by chronic intermittent hypoxia. Quintero M; Olea E; Conde SV; Obeso A; Gallego-Martin T; Gonzalez C; Monserrat JM; Gómez-Niño A; Yubero S; Agapito T J Physiol; 2016 Mar; 594(6):1773-90. PubMed ID: 26752660 [TBL] [Abstract][Full Text] [Related]
16. Chronic intermittent hypoxia exposure induces kidney injury in growing rats. Poonit ND; Zhang YC; Ye CY; Cai HL; Yu CY; Li T; Cai XH Sleep Breath; 2018 May; 22(2):453-461. PubMed ID: 29124628 [TBL] [Abstract][Full Text] [Related]
17. CB1 receptor antagonist rimonabant protects against chronic intermittent hypoxia-induced renal injury in rats. Zhao L; Liu T; Dou ZJ; Wang MT; Hu ZX; Wang B BMC Nephrol; 2021 Apr; 22(1):153. PubMed ID: 33902473 [TBL] [Abstract][Full Text] [Related]
18. CB1 receptor antagonist rimonabant protects against chronic intermittent hypoxia-induced bone metabolism disorder and destruction in rats. Dou ZJ; Gao XL; Jia YL; Chen J; Yang JJ; Chen Y; Wu SJ; Liu T; Wang MT; Yang C; Zhang N; Wang B Sleep Breath; 2020 Dec; 24(4):1441-1449. PubMed ID: 31898189 [TBL] [Abstract][Full Text] [Related]
19. Chronic intermittent hypoxia aggravates cardiomyocyte apoptosis in rat ovariectomized model. Gao YH; Chen L; Ma YL; He QY Chin Med J (Engl); 2012 Sep; 125(17):3087-92. PubMed ID: 22932186 [TBL] [Abstract][Full Text] [Related]
20. The contribution of chronic intermittent hypoxia to OSAHS: From the perspective of serum extracellular microvesicle proteins. Zhang H; Yang F; Guo Y; Wang L; Fang F; Wu H; Nie S; Wang Y; Fung ML; Huang Y; Deng H; Qin Y; Ma X; Wei Y Metabolism; 2018 Aug; 85():97-108. PubMed ID: 29522771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]