These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28050832)

  • 1. Monitoring Vascular Regeneration and Xylem Connectivity in Arabidopsis thaliana.
    Melnyk CW
    Methods Mol Biol; 2017; 1544():91-102. PubMed ID: 28050832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CLE peptides in vascular development.
    Qiang Y; Wu J; Han H; Wang G
    J Integr Plant Biol; 2013 Apr; 55(4):389-94. PubMed ID: 23473393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant vascular development: mechanisms and environmental regulation.
    Agustí J; Blázquez MA
    Cell Mol Life Sci; 2020 Oct; 77(19):3711-3728. PubMed ID: 32193607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring Xylem Transport in Arabidopsis thaliana Seedlings Using Fluorescent Dyes.
    Bartusch K; Blanco-Touriñán N; Rodriguez-Villalón A; Truernit E
    Methods Mol Biol; 2024; 2722():3-15. PubMed ID: 37897596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome dynamics at
    Melnyk CW; Gabel A; Hardcastle TJ; Robinson S; Miyashima S; Grosse I; Meyerowitz EM
    Proc Natl Acad Sci U S A; 2018 Mar; 115(10):E2447-E2456. PubMed ID: 29440499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. XYLEM INTERMIXED WITH PHLOEM1, a leucine-rich repeat receptor-like kinase required for stem growth and vascular development in Arabidopsis thaliana.
    Bryan AC; Obaidi A; Wierzba M; Tax FE
    Planta; 2012 Jan; 235(1):111-22. PubMed ID: 21853254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vascular tissue development in plants.
    Fukuda H; Ohashi-Ito K
    Curr Top Dev Biol; 2019; 131():141-160. PubMed ID: 30612615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel system for xylem cell differentiation in Arabidopsis thaliana.
    Kondo Y; Fujita T; Sugiyama M; Fukuda H
    Mol Plant; 2015 Apr; 8(4):612-21. PubMed ID: 25624147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment and Utilization of Habituated Cell Suspension Cultures for Hormone-Inducible Xylogenesis.
    Ménard D; Serk H; Decou R; Pesquet E
    Methods Mol Biol; 2017; 1544():37-57. PubMed ID: 28050827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of vascular plants through redeployment of ancient developmental regulators.
    Lu KJ; van 't Wout Hofland N; Mor E; Mutte S; Abrahams P; Kato H; Vandepoele K; Weijers D; De Rybel B
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):733-740. PubMed ID: 31874927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-lapse imaging of Arabidopsis leaf development shows dynamic patterns of procambium formation.
    Sawchuk MG; Head P; Donner TJ; Scarpella E
    New Phytol; 2007; 176(3):560-571. PubMed ID: 17953541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of HD-ZIP III transcription factors and miR165/166 in vascular development and secondary cell wall formation.
    Du Q; Wang H
    Plant Signal Behav; 2015; 10(10):e1078955. PubMed ID: 26340415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue regeneration after bark girdling: an ideal research tool to investigate plant vascular development and regeneration.
    Chen JJ; Zhang J; He XQ
    Physiol Plant; 2014 Jun; 151(2):147-55. PubMed ID: 24111607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VND6-induced Xylem Cell Differentiation in Arabidopsis Cell Cultures.
    Oda Y
    Methods Mol Biol; 2017; 1544():67-73. PubMed ID: 28050829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Realizing pipe dreams - a detailed picture of vascular development.
    Etchells JP; Turner SR
    J Exp Bot; 2017 Jan; 68(1):1-4. PubMed ID: 28013229
    [No Abstract]   [Full Text] [Related]  

  • 16. Versatile method for quantifying and analyzing morphological differences in experimentally obtained images.
    Bagdassarian KS; Connor KA; Jermyn IH; Etchells JP
    Plant Signal Behav; 2020; 15(1):1693092. PubMed ID: 31762388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Developmental Framework for Graft Formation and Vascular Reconnection in Arabidopsis thaliana.
    Melnyk CW; Schuster C; Leyser O; Meyerowitz EM
    Curr Biol; 2015 May; 25(10):1306-18. PubMed ID: 25891401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring Phloem Transport Velocity in Arabidopsis Seedlings Using the Fluorescent Coumarin Glucoside, Esculin.
    Knox K
    Methods Mol Biol; 2019; 2014():195-201. PubMed ID: 31197797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro.
    Atta R; Laurens L; Boucheron-Dubuisson E; Guivarc'h A; Carnero E; Giraudat-Pautot V; Rech P; Chriqui D
    Plant J; 2009 Feb; 57(4):626-44. PubMed ID: 18980654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant-PET Scans: In Vivo Mapping of Xylem and Phloem Functioning.
    Hubeau M; Steppe K
    Trends Plant Sci; 2015 Oct; 20(10):676-685. PubMed ID: 26440436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.