BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 28051068)

  • 1. PaPrBaG: A machine learning approach for the detection of novel pathogens from NGS data.
    Deneke C; Rentzsch R; Renard BY
    Sci Rep; 2017 Jan; 7():39194. PubMed ID: 28051068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering the role of insertion sequences in the evolution of bacterial epidemic pathogens with
    Couchoud C; Bertrand X; Valot B; Hocquet D
    Microb Genom; 2020 Jun; 6(6):. PubMed ID: 32213253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SNooPer: a machine learning-based method for somatic variant identification from low-pass next-generation sequencing.
    Spinella JF; Mehanna P; Vidal R; Saillour V; Cassart P; Richer C; Ouimet M; Healy J; Sinnett D
    BMC Genomics; 2016 Nov; 17(1):912. PubMed ID: 27842494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finding Pathogenic Nucleic Acid Sequences in Next Generation Sequencing Data.
    Parfenov M; Seidman JG
    Curr Protoc Hum Genet; 2015 Jul; 86():18.9.1-18.9.10. PubMed ID: 26132004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial population genomics and infectious disease diagnostics.
    Joseph SJ; Read TD
    Trends Biotechnol; 2010 Dec; 28(12):611-8. PubMed ID: 20961641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive evaluation of the sl1p pipeline for 16S rRNA gene sequencing analysis.
    Whelan FJ; Surette MG
    Microbiome; 2017 Aug; 5(1):100. PubMed ID: 28807046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. E-probe Diagnostic Nucleic acid Analysis (EDNA): a theoretical approach for handling of next generation sequencing data for diagnostics.
    Stobbe AH; Daniels J; Espindola AS; Verma R; Melcher U; Ochoa-Corona F; Garzon C; Fletcher J; Schneider W
    J Microbiol Methods; 2013 Sep; 94(3):356-66. PubMed ID: 23867249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential human pathogenic bacteria in five hot springs in Eritrea revealed by next generation sequencing.
    Ghilamicael AM; Boga HI; Anami SE; Mehari T; Budambula NLM
    PLoS One; 2018; 13(3):e0194554. PubMed ID: 29566040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MetaCluster 4.0: a novel binning algorithm for NGS reads and huge number of species.
    Wang Y; Leung HC; Yiu SM; Chin FY
    J Comput Biol; 2012 Feb; 19(2):241-9. PubMed ID: 22300323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. dipSPAdes: Assembler for Highly Polymorphic Diploid Genomes.
    Safonova Y; Bankevich A; Pevzner PA
    J Comput Biol; 2015 Jun; 22(6):528-45. PubMed ID: 25734602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial Genomic Data Analysis in the Next-Generation Sequencing Era.
    Orsini M; Cuccuru G; Uva P; Fotia G
    Methods Mol Biol; 2016; 1415():407-22. PubMed ID: 27115645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DBG2OLC: Efficient Assembly of Large Genomes Using Long Erroneous Reads of the Third Generation Sequencing Technologies.
    Ye C; Hill CM; Wu S; Ruan J; Ma ZS
    Sci Rep; 2016 Aug; 6():31900. PubMed ID: 27573208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UMD-Predictor: A High-Throughput Sequencing Compliant System for Pathogenicity Prediction of any Human cDNA Substitution.
    Salgado D; Desvignes JP; Rai G; Blanchard A; Miltgen M; Pinard A; Lévy N; Collod-Béroud G; Béroud C
    Hum Mutat; 2016 May; 37(5):439-46. PubMed ID: 26842889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NGS for Sequence Variants.
    Teng S
    Adv Exp Med Biol; 2016; 939():1-20. PubMed ID: 27807741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of sequencing technology in clinical microbial infection.
    Yu X; Jiang W; Shi Y; Ye H; Lin J
    J Cell Mol Med; 2019 Nov; 23(11):7143-7150. PubMed ID: 31475453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial next generation sequencing (NGS) made easy.
    Tassios PT; Moran-Gilad J
    Clin Microbiol Infect; 2018 Apr; 24(4):332-334. PubMed ID: 29548687
    [No Abstract]   [Full Text] [Related]  

  • 17. Comparative assessment of next-generation sequencing, denaturing gradient gel electrophoresis, clonal restriction fragment length polymorphism and cloning-sequencing as methods for characterizing commercial microbial consortia.
    Samarajeewa AD; Hammad A; Masson L; Khan IU; Scroggins R; Beaudette LA
    J Microbiol Methods; 2015 Jan; 108():103-11. PubMed ID: 25479430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-Wide Locations of Potential Epimutations Associated with Environmentally Induced Epigenetic Transgenerational Inheritance of Disease Using a Sequential Machine Learning Prediction Approach.
    Haque MM; Holder LB; Skinner MK
    PLoS One; 2015; 10(11):e0142274. PubMed ID: 26571271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning: novel bioinformatics approaches for combating antimicrobial resistance.
    Macesic N; Polubriaginof F; Tatonetti NP
    Curr Opin Infect Dis; 2017 Dec; 30(6):511-517. PubMed ID: 28914640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinformatics of antimicrobial resistance in the age of molecular epidemiology.
    McArthur AG; Wright GD
    Curr Opin Microbiol; 2015 Oct; 27():45-50. PubMed ID: 26241506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.