BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 28051068)

  • 21. InvBFM: finding genomic inversions from high-throughput sequence data based on feature mining.
    Wu Z; Wu Y; Gao J
    BMC Genomics; 2020 Mar; 21(Suppl 1):173. PubMed ID: 32138660
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coverage-based consensus calling (CbCC) of short sequence reads and comparison of CbCC results to identify SNPs in chickpea (Cicer arietinum; Fabaceae), a crop species without a reference genome.
    Azam S; Thakur V; Ruperao P; Shah T; Balaji J; Amindala B; Farmer AD; Studholme DJ; May GD; Edwards D; Jones JD; Varshney RK
    Am J Bot; 2012 Feb; 99(2):186-92. PubMed ID: 22301893
    [TBL] [Abstract][Full Text] [Related]  

  • 23. mInDel: a high-throughput and efficient pipeline for genome-wide InDel marker development.
    Lv Y; Liu Y; Zhao H
    BMC Genomics; 2016 Apr; 17():290. PubMed ID: 27079510
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of machine learning algorithms as integrative tools for validation of next generation sequencing data.
    Marceddu G; Dallavilla T; Guerri G; Zulian A; Marinelli C; Bertelli M
    Eur Rev Med Pharmacol Sci; 2019 Sep; 23(18):8139-8147. PubMed ID: 31599443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid infectious disease identification by next-generation DNA sequencing.
    Ellis JE; Missan DS; Shabilla M; Martinez D; Fry SE
    J Microbiol Methods; 2017 Jul; 138():12-19. PubMed ID: 27659739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metagenomic next-generation sequencing of viruses infecting grapevines.
    Burger JT; Maree HJ
    Methods Mol Biol; 2015; 1302():315-30. PubMed ID: 25981264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Next-generation sequencing and its applications in molecular diagnostics.
    Su Z; Ning B; Fang H; Hong H; Perkins R; Tong W; Shi L
    Expert Rev Mol Diagn; 2011 Apr; 11(3):333-43. PubMed ID: 21463242
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A computational approach for identifying pathogenicity islands in prokaryotic genomes.
    Yoon SH; Hur CG; Kang HY; Kim YH; Oh TK; Kim JF
    BMC Bioinformatics; 2005 Jul; 6():184. PubMed ID: 16033657
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hidden Markov Models in Bioinformatics: SNV Inference from Next Generation Sequence.
    Bian J; Zhou X
    Methods Mol Biol; 2017; 1552():123-133. PubMed ID: 28224495
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A high-throughput next-generation sequencing assay for the mitochondrial genome.
    Dames S; Eilbeck K; Mao R
    Methods Mol Biol; 2015; 1264():77-88. PubMed ID: 25631005
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two Efficient Techniques to Find Approximate Overlaps between Sequences.
    Haj Rachid M
    Biomed Res Int; 2017; 2017():2731385. PubMed ID: 28293632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-throughput sequencing in the population analysis of bacterial pathogens of humans.
    Maiden MC
    Int J Med Microbiol; 2000 May; 290(2):183-90. PubMed ID: 11045923
    [TBL] [Abstract][Full Text] [Related]  

  • 33. acdc - Automated Contamination Detection and Confidence estimation for single-cell genome data.
    Lux M; Krüger J; Rinke C; Maus I; Schlüter A; Woyke T; Sczyrba A; Hammer B
    BMC Bioinformatics; 2016 Dec; 17(1):543. PubMed ID: 27998267
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of Next Generation Sequencing (NGS) technologies for the genome-wide detection of transposition.
    Elbaidouri M; Chaparro C; Panaud O
    Methods Mol Biol; 2013; 1057():265-74. PubMed ID: 23918435
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Review of alignment and SNP calling algorithms for next-generation sequencing data.
    Mielczarek M; Szyda J
    J Appl Genet; 2016 Feb; 57(1):71-9. PubMed ID: 26055432
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mapping Billions of Short Reads to a Reference Genome.
    Hung JH; Weng Z
    Cold Spring Harb Protoc; 2017 Jan; 2017(1):. PubMed ID: 27574203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detecting DNA of novel fungal pathogens using ResNets and a curated fungi-hosts data collection.
    Bartoszewicz JM; Nasri F; Nowicka M; Renard BY
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii168-ii174. PubMed ID: 36124807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Massive parallel sequencing in animal genetics: wherefroms and wheretos.
    Pérez-Enciso M; Ferretti L
    Anim Genet; 2010 Dec; 41(6):561-9. PubMed ID: 20477787
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier.
    Yousef M; Nebozhyn M; Shatkay H; Kanterakis S; Showe LC; Showe MK
    Bioinformatics; 2006 Jun; 22(11):1325-34. PubMed ID: 16543277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.