These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28051108)

  • 1. A new structure-property connection in the skeletal elements of the marine sponge Tethya aurantia that guards against buckling instability.
    Monn MA; Kesari H
    Sci Rep; 2017 Jan; 7():39547. PubMed ID: 28051108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesoscale elastic properties of marine sponge spicules.
    Zhang Y; Reed BW; Chung FR; Koski KJ
    J Struct Biol; 2016 Jan; 193(1):67-74. PubMed ID: 26672719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced bending failure strain in biological glass fibers due to internal lamellar architecture.
    Monn MA; Kesari H
    J Mech Behav Biomed Mater; 2017 Dec; 76():69-75. PubMed ID: 28595803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesostructure from hydration gradients in demosponge biosilica.
    Neilson JR; George NC; Murr MM; Seshadri R; Morse DE
    Chemistry; 2014 Apr; 20(17):4956-65. PubMed ID: 24633700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron microscope analyses of the bio-silica basal spicule from the Monorhaphis chuni sponge.
    Werner P; Blumtritt H; Zlotnikov I; Graff A; Dauphin Y; Fratzl P
    J Struct Biol; 2015 Aug; 191(2):165-74. PubMed ID: 26094876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant siliceous spicules from the deep-sea glass sponge Monorhaphis chuni.
    Wang X; Schröder HC; Müller WE
    Int Rev Cell Mol Biol; 2009; 273():69-115. PubMed ID: 19215903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sawtooth patterns in flexural force curves of structural biological materials are not signatures of toughness enhancement: Part I.
    Kochiyama S; Fang W; Monn MA; Kesari H
    J Mech Behav Biomed Mater; 2021 Jul; 119():104362. PubMed ID: 33901967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New functional insights into the internal architecture of the laminated anchor spicules of Euplectella aspergillum.
    Monn MA; Weaver JC; Zhang T; Aizenberg J; Kesari H
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):4976-81. PubMed ID: 25848003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lamellar architectures in stiff biomaterials may not always be templates for enhancing toughness in composites.
    Monn MA; Vijaykumar K; Kochiyama S; Kesari H
    Nat Commun; 2020 Jan; 11(1):373. PubMed ID: 31953388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sawtooth patterns in flexural force curves of structural biological materials are not signatures of toughness enhancement: Part II.
    Fang W; Kochiyama S; Kesari H
    J Mech Behav Biomed Mater; 2021 Dec; 124():104787. PubMed ID: 34534844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sponge spicules as blueprints for the biofabrication of inorganic-organic composites and biomaterials.
    Müller WE; Wang X; Cui FZ; Jochum KP; Tremel W; Bill J; Schröder HC; Natalio F; Schlossmacher U; Wiens M
    Appl Microbiol Biotechnol; 2009 Jun; 83(3):397-413. PubMed ID: 19430775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis.
    Müller WE; Wang X; Kropf K; Ushijima H; Geurtsen W; Eckert C; Tahir MN; Tremel W; Boreiko A; Schlossmacher U; Li J; Schröder HC
    J Struct Biol; 2008 Feb; 161(2):188-203. PubMed ID: 18054502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum.
    Weaver JC; Aizenberg J; Fantner GE; Kisailus D; Woesz A; Allen P; Fields K; Porter MJ; Zok FW; Hansma PK; Fratzl P; Morse DE
    J Struct Biol; 2007 Apr; 158(1):93-106. PubMed ID: 17175169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axial growth of hexactinellid spicules: formation of cone-like structural units in the giant basal spicules of the hexactinellid Monorhaphis.
    Wang X; Boreiko A; Schlossmacher U; Brandt D; Schröder HC; Li J; Kaandorp JA; Götz H; Duschner H; Müller WE
    J Struct Biol; 2008 Dec; 164(3):270-80. PubMed ID: 18805491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical and nonlinear optical properties of sea glass sponge spicules.
    Kulchin YN; Bezverbny AV; Bukin OA; Voznesensky SS; Galkina AN; Drozdov AL; Nagorny IG
    Prog Mol Subcell Biol; 2009; 47():315-40. PubMed ID: 19198784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Millimeter Scale Flexural Testing System for Measuring the Mechanical Properties of Marine Sponge Spicules.
    Monn MA; Ferreira J; Yang J; Kesari H
    J Vis Exp; 2017 Oct; (128):. PubMed ID: 29053688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions.
    Uriz MJ; Turon X; Becerro MA; Agell G
    Microsc Res Tech; 2003 Nov; 62(4):279-99. PubMed ID: 14534903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale.
    Aizenberg J; Weaver JC; Thanawala MS; Sundar VC; Morse DE; Fratzl P
    Science; 2005 Jul; 309(5732):275-8. PubMed ID: 16002612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comments on a skeleton design paradigm for a demosponge.
    Aluma Y; Ilan M; Sherman D
    J Struct Biol; 2011 Sep; 175(3):415-24. PubMed ID: 21605685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silica condensation by a silicatein α homologue involves surface-induced transition to a stable structural intermediate forming a saturated monolayer.
    Patwardhan SV; Holt SA; Kelly SM; Kreiner M; Perry CC; van der Walle CF
    Biomacromolecules; 2010 Nov; 11(11):3126-35. PubMed ID: 20879760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.