These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 28051170)

  • 1. Major cause of unprecedented Arctic warming in January 2016: Critical role of an Atlantic windstorm.
    Kim BM; Hong JY; Jun SY; Zhang X; Kwon H; Kim SJ; Kim JH; Kim SW; Kim HK
    Sci Rep; 2017 Jan; 7():40051. PubMed ID: 28051170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatio-temporal change and variability of Barents-Kara sea ice, in the Arctic: Ocean and atmospheric implications.
    Kumar A; Yadav J; Mohan R
    Sci Total Environ; 2021 Jan; 753():142046. PubMed ID: 32892004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vertical Feedback Mechanism of Winter Arctic Amplification and Sea Ice Loss.
    Kim KY; Kim JY; Kim J; Yeo S; Na H; Hamlington BD; Leben RR
    Sci Rep; 2019 Feb; 9(1):1184. PubMed ID: 30718765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sea ice-air interactions amplify multidecadal variability in the North Atlantic and Arctic region.
    Deng J; Dai A
    Nat Commun; 2022 Apr; 13(1):2100. PubMed ID: 35440575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A central arctic extreme aerosol event triggered by a warm air-mass intrusion.
    Dada L; Angot H; Beck I; Baccarini A; Quéléver LLJ; Boyer M; Laurila T; Brasseur Z; Jozef G; de Boer G; Shupe MD; Henning S; Bucci S; Dütsch M; Stohl A; Petäjä T; Daellenbach KR; Jokinen T; Schmale J
    Nat Commun; 2022 Sep; 13(1):5290. PubMed ID: 36075920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability.
    Tokinaga H; Xie SP; Mukougawa H
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6227-6232. PubMed ID: 28559341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The unprecedented 2016-17 Arctic sea ice growth season: the crucial role of atmospheric rivers and longwave fluxes.
    Hegyi BM; Taylor PC
    Geophys Res Lett; 2018 May; 45(10):5204-5212. PubMed ID: 33479551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weakening of the stratospheric polar vortex by Arctic sea-ice loss.
    Kim BM; Son SW; Min SK; Jeong JH; Kim SJ; Zhang X; Shim T; Yoon JH
    Nat Commun; 2014 Sep; 5():4646. PubMed ID: 25181390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of potential transport of pollutants into the Barents Sea via sea ice--an observational approach.
    Korsnes R; Pavlova O; Godtliebsen F
    Mar Pollut Bull; 2002 Sep; 44(9):861-9. PubMed ID: 12405210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The phenology of Arctic Ocean surface warming.
    Steele M; Dickinson S
    J Geophys Res Oceans; 2016 Sep; 121(9):6847-6861. PubMed ID: 27867789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The poleward enhanced Arctic Ocean cooling machine in a warming climate.
    Shu Q; Wang Q; Song Z; Qiao F
    Nat Commun; 2021 May; 12(1):2966. PubMed ID: 34016987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced modern heat transfer to the Arctic by warm Atlantic Water.
    Spielhagen RF; Werner K; Sørensen SA; Zamelczyk K; Kandiano E; Budeus G; Husum K; Marchitto TM; Hald M
    Science; 2011 Jan; 331(6016):450-3. PubMed ID: 21273485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced wintertime greenhouse effect reinforcing Arctic amplification and initial sea-ice melting.
    Cao Y; Liang S; Chen X; He T; Wang D; Cheng X
    Sci Rep; 2017 Aug; 7(1):8462. PubMed ID: 28814806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vertical structure of recent Arctic warming.
    Graversen RG; Mauritsen T; Tjernström M; Källén E; Svensson G
    Nature; 2008 Jan; 451(7174):53-6. PubMed ID: 18172495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Winter warming as an important co-driver for Betula nana growth in western Greenland during the past century.
    Hollesen J; Buchwal A; Rachlewicz G; Hansen BU; Hansen MO; Stecher O; Elberling B
    Glob Chang Biol; 2015 Jun; 21(6):2410-23. PubMed ID: 25788025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Summers with low Arctic sea ice linked to persistence of spring atmospheric circulation patterns.
    Kapsch ML; Skific N; Graversen RG; Tjernström M; Francis JA
    Clim Dyn; 2019; 52(3):2497-2512. PubMed ID: 30956407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia.
    Forbes BC; Kumpula T; Meschtyb N; Laptander R; Macias-Fauria M; Zetterberg P; Verdonen M; Skarin A; Kim KY; Boisvert LN; Stroeve JC; Bartsch A
    Biol Lett; 2016 Nov; 12(11):. PubMed ID: 27852939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms for low-frequency variability of summer Arctic sea ice extent.
    Zhang R
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4570-5. PubMed ID: 25825758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A possible link between winter Arctic sea ice decline and a collapse of the Beaufort High?
    Petty AA
    Geophys Res Lett; 2018 Mar; 45(6):2879-2882. PubMed ID: 30245533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arctic sea ice and climate change--will the ice disappear in this century?
    Johannessen OM; Miles MW
    Sci Prog; 2000; 83 ( Pt 3)():209-22. PubMed ID: 11077477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.