BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 28051854)

  • 1. Homogeneous Transition Metal Catalysis of Acceptorless Dehydrogenative Alcohol Oxidation: Applications in Hydrogen Storage and to Heterocycle Synthesis.
    Crabtree RH
    Chem Rev; 2017 Jul; 117(13):9228-9246. PubMed ID: 28051854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isoelectronic Manganese and Iron Hydrogenation/Dehydrogenation Catalysts: Similarities and Divergences.
    Gorgas N; Kirchner K
    Acc Chem Res; 2018 Jun; 51(6):1558-1569. PubMed ID: 29863334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron-based nanocatalyst for the acceptorless dehydrogenation reactions.
    Jaiswal G; Landge VG; Jagadeesan D; Balaraman E
    Nat Commun; 2017 Dec; 8(1):2147. PubMed ID: 29247179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-Row Transition-Metal Catalyzed Acceptorless Dehydrogenation and Related Reactions: A Personal Account.
    Subaramanian M; Sivakumar G; Balaraman E
    Chem Rec; 2021 Dec; 21(12):3839-3871. PubMed ID: 34415674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tris(pentafluorophenyl)borane-Catalyzed Acceptorless Dehydrogenation of N-Heterocycles.
    Kojima M; Kanai M
    Angew Chem Int Ed Engl; 2016 Sep; 55(40):12224-7. PubMed ID: 27539196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFT Study of Acceptorless Alcohol Dehydrogenation Mediated by Ruthenium Pincer Complexes: Ligand Tautomerization Governing Metal Ligand Cooperation.
    Hou C; Zhang Z; Zhao C; Ke Z
    Inorg Chem; 2016 Jul; 55(13):6539-51. PubMed ID: 27322755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of N-Heterocycles via Oxidant-Free Dehydrocyclization of Alcohols Using Heterogeneous Catalysts.
    Sun K; Shan H; Lu GP; Cai C; Beller M
    Angew Chem Int Ed Engl; 2021 Nov; 60(48):25188-25202. PubMed ID: 34138507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the mechanisms of cobalt-catalyzed hydrogenation and dehydrogenation reactions.
    Zhang G; Vasudevan KV; Scott BL; Hanson SK
    J Am Chem Soc; 2013 Jun; 135(23):8668-81. PubMed ID: 23713752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. System with potential dual modes of metal-ligand cooperation: highly catalytically active pyridine-based PNNH-Ru pincer complexes.
    Fogler E; Garg JA; Hu P; Leitus G; Shimon LJ; Milstein D
    Chemistry; 2014 Nov; 20(48):15727-31. PubMed ID: 25331061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation.
    Ginovska-Pangovska B; Dutta A; Reback ML; Linehan JC; Shaw WJ
    Acc Chem Res; 2014 Aug; 47(8):2621-30. PubMed ID: 24945095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methanol dehydrogenation by iridium N-heterocyclic carbene complexes.
    Campos J; Sharninghausen LS; Manas MG; Crabtree RH
    Inorg Chem; 2015 Jun; 54(11):5079-84. PubMed ID: 25615426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational study of metal free alcohol dehydrogenation employing frustrated lewis pairs.
    Mane MV; Rizvi MA; Vanka K
    J Org Chem; 2015 Feb; 80(4):2081-91. PubMed ID: 25615238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-free carbocatalyst for room temperature acceptorless dehydrogenation of N-heterocycles.
    Hu H; Nie Y; Tao Y; Huang W; Qi L; Nie R
    Sci Adv; 2022 Jan; 8(4):eabl9478. PubMed ID: 35089786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal complexes with oxygen-functionalized NHC ligands: synthesis and applications.
    Hameury S; de Frémont P; Braunstein P
    Chem Soc Rev; 2017 Feb; 46(3):632-733. PubMed ID: 28083579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acceptorless Dehydrogenative Oxidation of Secondary Alcohols Catalysed by Cp*Ir(III) -NHC Complexes.
    Gülcemal S; Gülcemal D; Whitehead GF; Xiao J
    Chemistry; 2016 Jul; 22(30):10513-22. PubMed ID: 27321021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acceptorless Dehydrogenation of N-Heterocycles by Merging Visible-Light Photoredox Catalysis and Cobalt Catalysis.
    He KH; Tan FF; Zhou CZ; Zhou GJ; Yang XL; Li Y
    Angew Chem Int Ed Engl; 2017 Mar; 56(11):3080-3084. PubMed ID: 28156039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Acceptorless Dehydrogenation of Amino Alcohols and 2-Hydroxybenzyl Alcohols for Annulation Reaction under Neutral Conditions.
    Pandey AM; Digrawal NK; Mohanta N; Jamdade AB; Chaudhari MB; Bisht GS; Gnanaprakasam B
    J Org Chem; 2021 Jul; 86(13):8805-8828. PubMed ID: 34151556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manganese-Catalyzed Multicomponent Synthesis of Pyrroles through Acceptorless Dehydrogenation Hydrogen Autotransfer Catalysis: Experiment and Computation.
    Borghs JC; Azofra LM; Biberger T; Linnenberg O; Cavallo L; Rueping M; El-Sepelgy O
    ChemSusChem; 2019 Jul; 12(13):3083-3088. PubMed ID: 30589227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous nickel-catalysed reversible, acceptorless dehydrogenation of N-heterocycles for hydrogen storage.
    Ryabchuk P; Agapova A; Kreyenschulte C; Lund H; Junge H; Junge K; Beller M
    Chem Commun (Camb); 2019 Apr; 55(34):4969-4972. PubMed ID: 30968097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.
    Chelucci G; Baldino S; Baratta W
    Acc Chem Res; 2015 Feb; 48(2):363-79. PubMed ID: 25650714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.