These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 28051865)

  • 61. High sensitivity of diesel soot morphological and optical properties to combustion temperature in a shock tube.
    Qiu C; Khalizov AF; Hogan B; Petersen EL; Zhang R
    Environ Sci Technol; 2014 Jun; 48(11):6444-52. PubMed ID: 24803287
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Experimental investigation on NOx and green house gas emissions from a marine auxiliary diesel engine using ultralow sulfur light fuel.
    Geng P; Tan Q; Zhang C; Wei L; He X; Cao E; Jiang K
    Sci Total Environ; 2016 Dec; 572():467-475. PubMed ID: 27544351
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Impacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol.
    Martinsson J; Eriksson AC; Nielsen IE; Malmborg VB; Ahlberg E; Andersen C; Lindgren R; Nyström R; Nordin EZ; Brune WH; Svenningsson B; Swietlicki E; Boman C; Pagels JH
    Environ Sci Technol; 2015 Dec; 49(24):14663-71. PubMed ID: 26561964
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3.
    Kinsey JS; Hays MD; Dong Y; Williams DC; Logan R
    Environ Sci Technol; 2011 Apr; 45(8):3415-21. PubMed ID: 21428391
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Molecular Characterization of the Gas-Particle Interface of Soot Sampled from a Diesel Engine Using a Titration Method.
    Tapia A; Salgado MS; Martín MP; Lapuerta M; Rodríguez-Fernández J; Rossi MJ; Cabañas B
    Environ Sci Technol; 2016 Mar; 50(6):2946-55. PubMed ID: 26886850
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Are emissions of black carbon from gasoline vehicles underestimated? Insights from near and on-road measurements.
    Liggio J; Gordon M; Smallwood G; Li SM; Stroud C; Staebler R; Lu G; Lee P; Taylor B; Brook JR
    Environ Sci Technol; 2012 May; 46(9):4819-28. PubMed ID: 22309316
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic.
    Valavanidis A; Iliopoulos N; Gotsis G; Fiotakis K
    J Hazard Mater; 2008 Aug; 156(1-3):277-84. PubMed ID: 18249066
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Combustion of diesel fuel from a toxicological perspective. II. Toxicity.
    Scheepers PT; Bos RP
    Int Arch Occup Environ Health; 1992; 64(3):163-77. PubMed ID: 1383163
    [TBL] [Abstract][Full Text] [Related]  

  • 69. PAH and soot emissions from burning components of medical waste: examination/surgical gloves and cotton pads.
    Levendis YA; Atal A; Carlson JB; Quintana MD
    Chemosphere; 2001; 42(5-7):775-83. PubMed ID: 11219703
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Diesel Soot and Amine-Containing Organic Sulfate Aerosols in an Arctic Oil Field.
    Gunsch MJ; Liu J; Moffett CE; Sheesley RJ; Wang N; Zhang Q; Watson TB; Pratt KA
    Environ Sci Technol; 2020 Jan; 54(1):92-101. PubMed ID: 31840985
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Characterization of renewable diesel particulate matter gathered from non-premixed and partially premixed flame burners and from a diesel engine.
    Cadrazco M; Santamaría A; Jaramillo IC; Kaur K; Kelly KE; Agudelo JR
    Combust Flame; 2020 Apr; 214():65-79. PubMed ID: 32189720
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Raman spectroscopy of diesel and gasoline engine-out soot using different laser power.
    Ge H; Ye Z; He R
    J Environ Sci (China); 2019 May; 79():74-80. PubMed ID: 30784466
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Analysis of large oxygenated and nitrated polycyclic aromatic hydrocarbons formed under simulated diesel engine exhaust conditions (by compound fingerprints with SPE/LC-API-MS).
    Adelhelm C; Niessner R; Pöschl U; Letzel T
    Anal Bioanal Chem; 2008 Aug; 391(7):2599-608. PubMed ID: 18560812
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mechanism of accelerating soot oxidation by NO
    Li Z; Zhang W; Chen Z; Jiang Q
    Environ Pollut; 2020 Sep; 264():114708. PubMed ID: 32402712
    [TBL] [Abstract][Full Text] [Related]  

  • 75. On source identification and alteration of single diesel and wood smoke soot particles in the atmosphere; an X-ray microspectroscopy study.
    Vernooij MG; Mohr M; Tzvetkov G; Zelenay V; Huthwelker T; Kaegi R; Gehrig R; Grobéty B
    Environ Sci Technol; 2009 Jul; 43(14):5339-44. PubMed ID: 19708363
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The use of heterogeneous chemistry for the characterization of functional groups at the gas/particle interface of soot from a diesel engine at a particular running condition.
    Tapia A; Salgado MS; Martín MP; Sánchez-Valdepeñas J; Rossi MJ; Cabañas B
    Environ Sci Pollut Res Int; 2015 Apr; 22(7):4863-72. PubMed ID: 24807246
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Experimental investigation into the oxidation reactivity, morphology and graphitization of soot particles from diesel/n-octanol mixtures.
    Zhou Q; Wang Y; Wang X; Bai Y
    J Environ Sci (China); 2022 Feb; 112():218-230. PubMed ID: 34955206
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Primary and Secondary Sources of Gas-Phase Organic Acids from Diesel Exhaust.
    Friedman B; Link MF; Fulgham SR; Brophy P; Galang A; Brune WH; Jathar SH; Farmer DK
    Environ Sci Technol; 2017 Sep; 51(18):10872-10880. PubMed ID: 28825297
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The rapid alveolar absorption of diesel soot-adsorbed benzo[a]pyrene: bioavailability, metabolism and dosimetry of an inhaled particle-borne carcinogen.
    Gerde P; Muggenburg BA; Lundborg M; Dahl AR
    Carcinogenesis; 2001 May; 22(5):741-9. PubMed ID: 11323393
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Comparison of measurement methods for the characterization of the black carbon emissions from a T63 turboshaft engine burning conventional and Fischer-Tropsch fuels.
    Kinsey JS; Corporan E; Pavlovic J; DeWitt M; Klingshirn C; Logan R
    J Air Waste Manag Assoc; 2019 May; 69(5):576-591. PubMed ID: 30526430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.