BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28052191)

  • 1. Engineering a Thermostable Keto Acid Decarboxylase Using Directed Evolution and Computationally Directed Protein Design.
    Soh LMJ; Mak WS; Lin PP; Mi L; Chen FY; Damoiseaux R; Siegel JB; Liao JC
    ACS Synth Biol; 2017 Apr; 6(4):610-618. PubMed ID: 28052191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes.
    Lee WH; Seo SO; Bae YH; Nan H; Jin YS; Seo JH
    Bioprocess Biosyst Eng; 2012 Nov; 35(9):1467-75. PubMed ID: 22543927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of C4 and C5 branched-chain alcohols by engineered Escherichia. coli.
    Chen X; Xu J; Yang L; Yuan Z; Xiao S; Zhang Y; Liang C; He M; Guo Y
    J Ind Microbiol Biotechnol; 2015 Nov; 42(11):1473-9. PubMed ID: 26350079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli.
    Atsumi S; Li Z; Liao JC
    Appl Environ Microbiol; 2009 Oct; 75(19):6306-11. PubMed ID: 19684168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saturated mutagenesis of ketoisovalerate decarboxylase V461 enabled specific synthesis of 1-pentanol via the ketoacid elongation cycle.
    Chen GS; Siao SW; Shen CR
    Sci Rep; 2017 Sep; 7(1):11284. PubMed ID: 28900255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of alpha-ketoisovalerate decarboxylase expression in Lactococcus lactis IFPL730.
    de la Plaza M; Peláez C; Requena T
    J Mol Microbiol Biotechnol; 2009; 17(2):96-100. PubMed ID: 19033676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical and molecular characterization of alpha-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by Lactococcus lactis.
    de la Plaza M; Fernández de Palencia P; Peláez C; Requena T
    FEMS Microbiol Lett; 2004 Sep; 238(2):367-74. PubMed ID: 15358422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-Guided Engineering of α-Keto Acid Decarboxylase for the Production of Higher Alcohols at Elevated Temperature.
    Sutiono S; Carsten J; Sieber V
    ChemSusChem; 2018 Sep; 11(18):3335-3344. PubMed ID: 29953730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Pseudomonas sp. strain VLB120 as platform biocatalyst for the production of isobutyric acid and other secondary metabolites.
    Lang K; Zierow J; Buehler K; Schmid A
    Microb Cell Fact; 2014 Jan; 13():2. PubMed ID: 24397404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expressing 2-keto acid pathway enzymes significantly increases photosynthetic isobutanol production.
    Xie H; Lindblad P
    Microb Cell Fact; 2022 Feb; 21(1):17. PubMed ID: 35105340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Branched-chain 2-keto acid decarboxylases derived from Psychrobacter.
    Wei J; Timler JG; Knutson CM; Barney BM
    FEMS Microbiol Lett; 2013 Sep; 346(2):105-12. PubMed ID: 23826991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein engineering of α-ketoisovalerate decarboxylase for improved isobutanol production in Synechocystis PCC 6803.
    Miao R; Xie H; M Ho F; Lindblad P
    Metab Eng; 2018 May; 47():42-48. PubMed ID: 29501927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of the activity of arylmalonate decarboxylase by random mutagenesis.
    Terao Y; Miyamoto K; Ohta H
    Appl Microbiol Biotechnol; 2006 Dec; 73(3):647-53. PubMed ID: 16865343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-guided engineering of Lactococcus lactis alcohol dehydrogenase LlAdhA for improved conversion of isobutyraldehyde to isobutanol.
    Liu X; Bastian S; Snow CD; Brustad EM; Saleski TE; Xu JH; Meinhold P; Arnold FH
    J Biotechnol; 2012 Dec; 164(2):188-95. PubMed ID: 22974724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Significantly improved thermostability of a reductase CgKR1 from Candida glabrata with a key mutation at Asp 138 for enhancing bioreduction of aromatic α-keto esters.
    Huang L; Xu JH; Yu HL
    J Biotechnol; 2015 Jun; 203():54-61. PubMed ID: 25795440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative assessment of native and heterologous 2-oxo acid decarboxylases for application in isobutanol production by Saccharomyces cerevisiae.
    Milne N; van Maris AJ; Pronk JT; Daran JM
    Biotechnol Biofuels; 2015; 8():204. PubMed ID: 26628917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and properties of the alpha-acetolactate decarboxylase from Lactococcus lactis subsp. lactis NCDO 2118.
    Phalip V; Monnet C; Schmitt P; Renault P; Godon JJ; Diviès C
    FEBS Lett; 1994 Aug; 351(1):95-9. PubMed ID: 8076701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determinants of substrate specificity in KdcA, a thiamin diphosphate-dependent decarboxylase.
    Yep A; Kenyon GL; McLeish MJ
    Bioorg Chem; 2006 Dec; 34(6):325-36. PubMed ID: 17028071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of alpha-keto acid decarboxylases in biotransformations.
    Iding H; Siegert P; Mesch K; Pohl M
    Biochim Biophys Acta; 1998 Jun; 1385(2):307-22. PubMed ID: 9655924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae.
    Kondo T; Tezuka H; Ishii J; Matsuda F; Ogino C; Kondo A
    J Biotechnol; 2012 May; 159(1-2):32-7. PubMed ID: 22342368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.