BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 28052196)

  • 21. Rapid In-Plane Pattern Growth for Large-Area Inverse Replication Through Electrohydrodynamic Instability of Polymer Films.
    Park H; Hwang J; Chae H; Kang DJ
    Small; 2024 Apr; ():e2400155. PubMed ID: 38644332
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional nanoscale metal, metal oxide, and semiconductor frameworks through DNA-programmable assembly and templating.
    Michelson A; Subramanian A; Kisslinger K; Tiwale N; Xiang S; Shen E; Kahn JS; Nykypanchuk D; Yan H; Nam CY; Gang O
    Sci Adv; 2024 Jan; 10(2):eadl0604. PubMed ID: 38198553
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Replica molding-based nanopatterning of tribocharge on elastomer with application to electrohydrodynamic nanolithography.
    Li Q; Peer A; Cho IH; Biswas R; Kim J
    Nat Commun; 2018 Mar; 9(1):974. PubMed ID: 29500374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of Nanoscale "Curtain Rods" for DNA Curtains Using Nanoimprint Lithography.
    Fazio TA; Visnapuu M; Greene EC; Wind SJ
    J Vac Sci Technol A; 2009 Dec; 27(6):3095-3098. PubMed ID: 20419081
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward three-dimensional DNA industrial nanorobots.
    Zhou F; Ni H; Zhu G; Bershadsky L; Sha R; Seeman NC; Chaikin PM
    Sci Robot; 2023 Dec; 8(85):eadf1274. PubMed ID: 38055806
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-Assembly of Hemimyzon Formosanus-Inspired Crescent-Shaped Nanosucker Arrays for Reversible Adhesion.
    Hsu JH; Tang NT; Hsu TF; Lin SH; Fang CY; Huang YW; Yang H
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56203-56212. PubMed ID: 38009758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lithography of Polymer Nanostructures on Glass for Teaching Polymer Chemistry and Physics.
    Sahar-Halbany A; Vance JM; Drain CM
    J Chem Educ; 2011 May; 88(5):615-618. PubMed ID: 21686088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystallographic legacy of Ned Seeman.
    Berman HM; DeTitta G
    Biophys J; 2022 Dec; 121(24):4766-4769. PubMed ID: 35787471
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent development in antiviral surfaces: Impact of topography and environmental conditions.
    Tarannum T; Ahmed S
    Heliyon; 2023 Jun; 9(6):e16698. PubMed ID: 37260884
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Harnessing DNA Nanotechnology and Chemistry for Applications in Photonics and Electronics.
    Dunn KE; Elfick A
    Bioconjug Chem; 2023 Jan; 34(1):97-104. PubMed ID: 36121896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advancing the Utility of DNA Origami Technique through Enhanced Stability of DNA-Origami-Based Assemblies.
    Manuguri S; Nguyen MK; Loo J; Natarajan AK; Kuzyk A
    Bioconjug Chem; 2023 Jan; 34(1):6-17. PubMed ID: 35984467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Janus-Type Phthalocyanine for the Assembly of Photoactive DNA Origami Coatings.
    Rahali A; Shaukat A; Almeida-Marrero V; Jamoussi B; de la Escosura A; Torres T; Kostiainen MA; Anaya-Plaza E
    Bioconjug Chem; 2021 Jun; 32(6):1123-1129. PubMed ID: 34029458
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scaling Up DNA Origami Lattice Assembly.
    Xin Y; Shen B; Kostiainen MA; Grundmeier G; Castro M; Linko V; Keller A
    Chemistry; 2021 Jun; 27(33):8564-8571. PubMed ID: 33780583
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modular self-assembly of gamma-modified peptide nucleic acids in organic solvent mixtures.
    Kumar S; Pearse A; Liu Y; Taylor RE
    Nat Commun; 2020 Jun; 11(1):2960. PubMed ID: 32528008
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural stability of DNA origami nanostructures under application-specific conditions.
    Ramakrishnan S; Ijäs H; Linko V; Keller A
    Comput Struct Biotechnol J; 2018; 16():342-349. PubMed ID: 30305885
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Supramolecularly Engineered Circular Bivalent Aptamer for Enhanced Functional Protein Delivery.
    Jiang Y; Pan X; Chang J; Niu W; Hou W; Kuai H; Zhao Z; Liu J; Wang M; Tan W
    J Am Chem Soc; 2018 Jun; 140(22):6780-6784. PubMed ID: 29772170
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polymer tube nanoreactors via DNA-origami templated synthesis.
    Tokura Y; Harvey S; Xu X; Chen C; Morsbach S; Wunderlich K; Fytas G; Wu Y; Ng DYW; Weil T
    Chem Commun (Camb); 2018 Mar; 54(22):2808-2811. PubMed ID: 29492501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visualization of the Cellular Uptake and Trafficking of DNA Origami Nanostructures in Cancer Cells.
    Wang P; Rahman MA; Zhao Z; Weiss K; Zhang C; Chen Z; Hurwitz SJ; Chen ZG; Shin DM; Ke Y
    J Am Chem Soc; 2018 Feb; 140(7):2478-2484. PubMed ID: 29406750
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increasing the stability of DNA nanostructure templates by atomic layer deposition of Al
    Kim H; Arbutina K; Xu A; Liu H
    Beilstein J Nanotechnol; 2017; 8():2363-2375. PubMed ID: 29181293
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA Nanostructures-Mediated Molecular Imprinting Lithography.
    Tian C; Kim H; Sun W; Kim Y; Yin P; Liu H
    ACS Nano; 2017 Jan; 11(1):227-238. PubMed ID: 28052196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.