These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 28052248)
1. Hox2 Genes Are Required for Tonotopic Map Precision and Sound Discrimination in the Mouse Auditory Brainstem. Karmakar K; Narita Y; Fadok J; Ducret S; Loche A; Kitazawa T; Genoud C; Di Meglio T; Thierry R; Bacelo J; Lüthi A; Rijli FM Cell Rep; 2017 Jan; 18(1):185-197. PubMed ID: 28052248 [TBL] [Abstract][Full Text] [Related]
2. Ephrin-A3 is required for tonotopic map precision and auditory functions in the mouse auditory brainstem. Hoshino N; Altarshan Y; Alzein A; Fernando AM; Nguyen HT; Majewski EF; Chen VC; Rochlin MW; Yu WM J Comp Neurol; 2021 Nov; 529(16):3633-3654. PubMed ID: 34235739 [TBL] [Abstract][Full Text] [Related]
3. Perfidious synaptic transmission in the guinea-pig auditory brainstem. Stasiak A; Sayles M; Winter IM PLoS One; 2018; 13(10):e0203712. PubMed ID: 30286113 [TBL] [Abstract][Full Text] [Related]
4. Assembly of the auditory circuitry by a Hox genetic network in the mouse brainstem. Di Bonito M; Narita Y; Avallone B; Sequino L; Mancuso M; Andolfi G; Franzè AM; Puelles L; Rijli FM; Studer M PLoS Genet; 2013; 9(2):e1003249. PubMed ID: 23408898 [TBL] [Abstract][Full Text] [Related]
5. Complexin-I is required for high-fidelity transmission at the endbulb of Held auditory synapse. Strenzke N; Chanda S; Kopp-Scheinpflug C; Khimich D; Reim K; Bulankina AV; Neef A; Wolf F; Brose N; Xu-Friedman MA; Moser T J Neurosci; 2009 Jun; 29(25):7991-8004. PubMed ID: 19553439 [TBL] [Abstract][Full Text] [Related]
6. Neurod1 Is Essential for the Primary Tonotopic Organization and Related Auditory Information Processing in the Midbrain. Macova I; Pysanenko K; Chumak T; Dvorakova M; Bohuslavova R; Syka J; Fritzsch B; Pavlinkova G J Neurosci; 2019 Feb; 39(6):984-1004. PubMed ID: 30541910 [TBL] [Abstract][Full Text] [Related]
7. KCNQ5 reaches synaptic endings in the auditory brainstem at hearing onset and targeting maintenance is activity-dependent. Garcia-Pino E; Caminos E; Juiz JM J Comp Neurol; 2010 Apr; 518(8):1301-14. PubMed ID: 20151361 [TBL] [Abstract][Full Text] [Related]
8. The ion channels and synapses responsible for the physiological diversity of mammalian lower brainstem auditory neurons. Leão RM Hear Res; 2019 May; 376():33-46. PubMed ID: 30606624 [TBL] [Abstract][Full Text] [Related]
9. Input timing for spatial processing is precisely tuned via constant synaptic delays and myelination patterns in the auditory brainstem. Stange-Marten A; Nabel AL; Sinclair JL; Fischl M; Alexandrova O; Wohlfrom H; Kopp-Scheinpflug C; Pecka M; Grothe B Proc Natl Acad Sci U S A; 2017 Jun; 114(24):E4851-E4858. PubMed ID: 28559325 [TBL] [Abstract][Full Text] [Related]
10. Auditory Input Shapes Tonotopic Differentiation of Kv1.1 Expression in Avian Cochlear Nucleus during Late Development. Akter N; Adachi R; Kato A; Fukaya R; Kuba H J Neurosci; 2018 Mar; 38(12):2967-2980. PubMed ID: 29439165 [TBL] [Abstract][Full Text] [Related]
11. Impaired auditory processing and altered structure of the endbulb of Held synapse in mice lacking the GluA3 subunit of AMPA receptors. García-Hernández S; Abe M; Sakimura K; Rubio ME Hear Res; 2017 Feb; 344():284-294. PubMed ID: 28011083 [TBL] [Abstract][Full Text] [Related]
12. Changes in the tonotopic map of the dorsal cochlear nucleus in hamsters with hair cell loss and radial nerve bundle degeneration. Meleca RJ; Kaltenbach JA; Falzarano PR Brain Res; 1997 Mar; 750(1-2):201-13. PubMed ID: 9098546 [TBL] [Abstract][Full Text] [Related]
13. Tonotopic projections of the auditory nerve to the cochlear nucleus angularis in the barn owl. Köppl C J Assoc Res Otolaryngol; 2001 Mar; 2(1):41-53. PubMed ID: 11545149 [TBL] [Abstract][Full Text] [Related]
14. Modulatory influences on time-coding neurons in the ventral cochlear nucleus. Kuenzel T Hear Res; 2019 Dec; 384():107824. PubMed ID: 31670183 [TBL] [Abstract][Full Text] [Related]
15. Early development of intrinsic and synaptic properties of chicken nucleus laminaris neurons. Gao H; Lu Y Neuroscience; 2008 Apr; 153(1):131-43. PubMed ID: 18355968 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional tonotopic organization of the C57 mouse cochlear nucleus. Luo F; Wang Q; Farid N; Liu X; Yan J Hear Res; 2009 Nov; 257(1-2):75-82. PubMed ID: 19695320 [TBL] [Abstract][Full Text] [Related]
17. The commissural pathway and cochlear nucleus bushy neurons: an in vivo intracellular investigation. Needham K; Paolini AG Brain Res; 2007 Feb; 1134(1):113-21. PubMed ID: 17174943 [TBL] [Abstract][Full Text] [Related]
18. Synaptic transmission at the cochlear nucleus endbulb synapse during age-related hearing loss in mice. Wang Y; Manis PB J Neurophysiol; 2005 Sep; 94(3):1814-24. PubMed ID: 15901757 [TBL] [Abstract][Full Text] [Related]
19. Expression of the Kv1.1 ion channel subunit in the auditory brainstem of the big brown bat, Eptesicus fuscus. Rosenberger MH; Fremouw T; Casseday JH; Covey E J Comp Neurol; 2003 Jul; 462(1):101-20. PubMed ID: 12761827 [TBL] [Abstract][Full Text] [Related]
20. Synaptic reliability and temporal precision are achieved via high quantal content and effective replenishment: auditory brainstem versus hippocampus. Krächan EG; Fischer AU; Franke J; Friauf E J Physiol; 2017 Feb; 595(3):839-864. PubMed ID: 27673320 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]