These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 28052386)

  • 21. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise?
    McKee KL; Vervaeke WC
    Glob Chang Biol; 2018 Mar; 24(3):1224-1238. PubMed ID: 29044820
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Burrowing crabs and physical factors hasten marsh recovery at panne edges.
    Beheshti K; Endris C; Goodwin P; Pavlak A; Wasson K
    PLoS One; 2022; 17(1):e0249330. PubMed ID: 34986154
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Saltmarsh plant responses to eutrophication.
    Johnson DS; Warren RS; Deegan LA; Mozdzer TJ
    Ecol Appl; 2016 Dec; 26(8):2647-2659. PubMed ID: 27763699
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vegetation zones as indicators of denitrification potential in salt marshes.
    Ooi SK; Barry A; Lawrence BA; Elphick CS; Helton AM
    Ecol Appl; 2022 Sep; 32(6):e2630. PubMed ID: 35403778
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New England salt marsh recovery: opportunistic colonization of an invasive species and its non-consumptive effects.
    Coverdale TC; Axelman EE; Brisson CP; Young EW; Altieri AH; Bertness MD
    PLoS One; 2013; 8(8):e73823. PubMed ID: 24009763
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Response of salt marshes to oiling from the Deepwater Horizon spill: Implications for plant growth, soil surface-erosion, and shoreline stability.
    Lin Q; Mendelssohn IA; Graham SA; Hou A; Fleeger JW; Deis DR
    Sci Total Environ; 2016 Jul; 557-558():369-77. PubMed ID: 27016685
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sizes of crab burrows regulate water-salt transport of tidal marsh wetlands.
    Xie L; Wang Y; Zhao S; Li Y; Zhou S; Zhang M; Zhang Z
    Mar Environ Res; 2022 Jul; 179():105691. PubMed ID: 35779401
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast.
    Armitage AR; Highfield WE; Brody SD; Louchouarn P
    PLoS One; 2015; 10(5):e0125404. PubMed ID: 25946132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pattern formation in marsh ecosystems modeled through the interaction of marsh vegetation, mussels and sediment.
    Zaytseva S; Shaw LB; Shi J; Kirwan ML; Lipcius RN
    J Theor Biol; 2022 Jun; 543():111102. PubMed ID: 35341780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distribution of crabs along a habitat gradient on the Yellow Sea coast after
    Chen P; Zhang Y; Zhu X; Lu C
    PeerJ; 2019; 7():e6775. PubMed ID: 31024775
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wetland loss patterns and inundation-productivity relationships prognosticate widespread salt for southern New England.
    Watson EB; Wigand C; Davey EW; Andrews HM; Bishop J; Raposa KB
    Estuaries Coast; 2017 May; 40(3):662-681. PubMed ID: 30008627
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Salt marsh vegetation change during a half-century of experimental nutrient addition and climate-driven controls in Great Sippewissett Marsh.
    Valiela I; Chenoweth K; Lloret J; Teal J; Howes B; Goehringer Toner D
    Sci Total Environ; 2023 Apr; 867():161546. PubMed ID: 36634783
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relationships between ecosystem properties and sea-level rise vulnerability of tidal wetlands of the U.S. Mid-Atlantic.
    Elsey-Quirk T; Watson EB; Raper K; Kreeger D; Paudel B; Haaf L; Maxwell-Doyle M; Padeletti A; Reilly E; Velinsky DJ
    Environ Monit Assess; 2022 Mar; 194(4):292. PubMed ID: 35325310
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Post-mortem ecosystem engineering by oysters creates habitat for a rare marsh plant.
    Guo H; Pennings SC
    Oecologia; 2012 Nov; 170(3):789-98. PubMed ID: 22644048
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactive effects of crab herbivory and spring drought on a Phragmites australis-dominated salt marsh in the Yellow River Delta.
    Zhang L; Lan S; Angelini C; Yi H; Zhao L; Chen L; Han G
    Sci Total Environ; 2021 Apr; 766():144254. PubMed ID: 33421778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crabs mediate interactions between native and invasive salt marsh plants: a mesocosm study.
    Zhang XD; Jia X; Chen YY; Shao JJ; Wu XR; Shang L; Li B
    PLoS One; 2013; 8(9):e74095. PubMed ID: 24023926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spartina alterniflora invasions reduce soil fungal diversity and simplify co-occurrence networks in a salt marsh ecosystem.
    Zhang G; Bai J; Tebbe CC; Huang L; Jia J; Wang W; Wang X; Yu L; Zhao Q
    Sci Total Environ; 2021 Mar; 758():143667. PubMed ID: 33248759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A coupled geomorphic and ecological model of tidal marsh evolution.
    Kirwan ML; Murray AB
    Proc Natl Acad Sci U S A; 2007 Apr; 104(15):6118-22. PubMed ID: 17389384
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Macrophyte disturbance alters aquatic surface microlayer structure, metabolism, and fate.
    Seliskar DM; Gallagher JL
    Oecologia; 2014 Mar; 174(3):1007-20. PubMed ID: 24135995
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiological and biochemical responses of the salt-marsh plant Spartina alterniflora to long-term wave exposure.
    Shao D; Zhou W; Bouma TJ; Asaeda T; Wang ZB; Liu X; Sun T; Cui B
    Ann Bot; 2020 Feb; 125(2):291-300. PubMed ID: 31120520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.