These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28052459)

  • 21. Differential regulation of gene products in newly synthesized Brassica napus allotetraploids is not related to protein function nor subcellular localization.
    Albertin W; Alix K; Balliau T; Brabant P; Davanture M; Malosse C; Valot B; Thiellement H
    BMC Genomics; 2007 Feb; 8():56. PubMed ID: 17313678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamics of protein expression during pollen germination in canola (Brassica napus).
    Sheoran IS; Pedersen EJ; Ross AR; Sawhney VK
    Planta; 2009 Sep; 230(4):779-93. PubMed ID: 19629521
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uptake, transport and distribution of molybdenum in two oilseed rape (Brassica napus L.) cultivars under different nitrate/ammonium ratios.
    Qin SY; Sun XC; Hu CX; Tan QL; Zhao XH
    J Zhejiang Univ Sci B; 2017 Jun; 18(6):512-521. PubMed ID: 28585427
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The native structure and composition of the cruciferin complex in Brassica napus.
    Nietzel T; Dudkina NV; Haase C; Denolf P; Semchonok DA; Boekema EJ; Braun HP; Sunderhaus S
    J Biol Chem; 2013 Jan; 288(4):2238-45. PubMed ID: 23192340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of senescence-associated protease activities involved in the efficient protein remobilization during leaf senescence of winter oilseed rape.
    Poret M; Chandrasekar B; van der Hoorn RAL; Avice JC
    Plant Sci; 2016 May; 246():139-153. PubMed ID: 26993244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteomic analysis of seed filling in Brassica napus. Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis.
    Hajduch M; Casteel JE; Hurrelmeyer KE; Song Z; Agrawal GK; Thelen JJ
    Plant Physiol; 2006 May; 141(1):32-46. PubMed ID: 16543413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative proteomic analysis of melon phloem exudates in response to viral infection.
    Serra-Soriano M; Navarro JA; Genoves A; Pallás V
    J Proteomics; 2015 Jun; 124():11-24. PubMed ID: 25892132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pod removal responsive change in phytohormones and its impact on protein degradation and amino acid transport in source leaves of Brassica napus.
    Lee BR; Zhang Q; Bae DW; Kim TH
    Plant Physiol Biochem; 2016 Sep; 106():159-64. PubMed ID: 27161582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ubiquitin recognition by the proteasome.
    Saeki Y
    J Biochem; 2017 Feb; 161(2):113-124. PubMed ID: 28069863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioinformatic and expression analysis of the Brassica napus L. cyclophilins.
    Hanhart P; Thieß M; Amari K; Bajdzienko K; Giavalisco P; Heinlein M; Kehr J
    Sci Rep; 2017 May; 7(1):1514. PubMed ID: 28473712
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aphid salivary proteases are capable of degrading sieve-tube proteins.
    Furch AC; van Bel AJ; Will T
    J Exp Bot; 2015 Feb; 66(2):533-9. PubMed ID: 25540441
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Xylem sap protein composition is conserved among different plant species.
    Buhtz A; Kolasa A; Arlt K; Walz C; Kehr J
    Planta; 2004 Aug; 219(4):610-8. PubMed ID: 15064951
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Systemic delivery of siRNA in pumpkin by a plant PHLOEM SMALL RNA-BINDING PROTEIN 1-ribonucleoprotein complex.
    Ham BK; Li G; Jia W; Leary JA; Lucas WJ
    Plant J; 2014 Nov; 80(4):683-94. PubMed ID: 25227635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plant fluid proteomics: Delving into the xylem sap, phloem sap and apoplastic fluid proteomes.
    Rodríguez-Celma J; Ceballos-Laita L; Grusak MA; Abadía J; López-Millán AF
    Biochim Biophys Acta; 2016 Aug; 1864(8):991-1002. PubMed ID: 27033031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteomic analysis of the mature Brassica stigma reveals proteins with diverse roles in vegetative and reproductive development.
    Nazemof N; Couroux P; Xing T; Robert LS
    Plant Sci; 2016 Sep; 250():51-58. PubMed ID: 27457983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phloem transport of structured RNAs: A widening repertoire of trafficking signals and protein factors.
    Tolstyko EA; Lezzhov AA; Morozov SY; Solovyev AG
    Plant Sci; 2020 Oct; 299():110602. PubMed ID: 32900440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The complexity of recognition of ubiquitinated substrates by the 26S proteasome.
    Ciechanover A; Stanhill A
    Biochim Biophys Acta; 2014 Jan; 1843(1):86-96. PubMed ID: 23872423
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The broccoli (Brassica oleracea) phloem tissue proteome.
    Anstead JA; Hartson SD; Thompson GA
    BMC Genomics; 2013 Nov; 14():764. PubMed ID: 24195484
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of an in vitro ribonucleoprotein complex between a viroid RNA and a phloem protein from cucumber plants.
    Gómez G; Pallás V
    Mol Plant Microbe Interact; 2001 Jul; 14(7):910-3. PubMed ID: 11437265
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative Proteomic Analysis of Brassica napus in Response to Drought Stress.
    Koh J; Chen G; Yoo MJ; Zhu N; Dufresne D; Erickson JE; Shao H; Chen S
    J Proteome Res; 2015 Aug; 14(8):3068-81. PubMed ID: 26086353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.