These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 28052480)

  • 1. Pulse-Width Dependence of the Cooling Effect on Sub-Micrometer ZnO Spherical Particle Formation by Pulsed-Laser Melting in a Liquid.
    Sakaki S; Ikenoue H; Tsuji T; Ishikawa Y; Koshizaki N
    Chemphyschem; 2017 May; 18(9):1101-1107. PubMed ID: 28052480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction Mechanism of Transition Metal Oxide Particles in Thermally Induced Nanobubbles during Pulsed Laser Melting in Ethanol.
    Suehara K; Takai R; Ishikawa Y; Koshizaki N; Omura K; Nagata H; Yamauchi Y
    Chemphyschem; 2021 Apr; 22(7):675-683. PubMed ID: 33496376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nanosecond pulsed laser heating system for studying liquid and supercooled liquid films in ultrahigh vacuum.
    Xu Y; Dibble CJ; Petrik NG; Smith RS; Joly AG; Tonkyn RG; Kay BD; Kimmel GA
    J Chem Phys; 2016 Apr; 144(16):164201. PubMed ID: 27131543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrofluoric acid pretreatment effect on the formation of silicon submicrometer particles by pulsed laser melting in liquid and their optical scattering property.
    Wakatsuki Y; Ishikawa Y; Koshizaki N
    Nanotechnology; 2020 Feb; 31(9):095601. PubMed ID: 31809268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determining the Composite Structure of Au-Fe-Based Submicrometre Spherical Particles Fabricated by Pulsed-Laser Melting in Liquid.
    Fuse H; Koshizaki N; Ishikawa Y; Swiatkowska-Warkocka Z
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30717489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fracture and Embedment Behavior of Brittle Submicrometer Spherical Particles Fabricated by Pulsed Laser Melting in Liquid Using a Scanning Electron Microscope Nanoindenter.
    Nakamura D; Koshizaki N; Shishido N; Kamiya S; Ishikawa Y
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser heating of dielectric particles for medical and biological applications.
    Tribelsky MI; Fukumoto Y
    Biomed Opt Express; 2016 Jul; 7(7):2781-8. PubMed ID: 27446706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of blackbody-like radiation from laser-heated gas-phase tungsten nanoparticles.
    Landström L; Heszler P
    J Phys Chem B; 2004 May; 108(20):6216-21. PubMed ID: 18950103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavior of Thermally Induced Nanobubbles during Instantaneous Particle Heating by Pulsed Laser Melting in Liquid.
    Tabayashi Y; Sakaki S; Koshizaki N; Yamauchi Y; Ishikawa Y
    Langmuir; 2021 Jun; 37(23):7167-7175. PubMed ID: 34078084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General bottom-up construction of spherical particles by pulsed laser irradiation of colloidal nanoparticles: a case study on CuO.
    Wang H; Kawaguchi K; Pyatenko A; Li X; Swiatkowska-Warkocka Z; Katou Y; Koshizaki N
    Chemistry; 2012 Jan; 18(1):163-9. PubMed ID: 22140012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction Energy Dependency on Pulse Width in ns NIR Laser Scanning of Silicon.
    Li S; Wang X; Chen G; Wang Z
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvent-particles interactions during composite particles formation by pulsed laser melting of α-Fe
    Shakeri MS; Polit O; Grabowska-Polanowska B; Pyatenko A; Suchanek K; Dulski M; Gurgul J; Swiatkowska-Warkocka Z
    Sci Rep; 2022 Jul; 12(1):11950. PubMed ID: 35831334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Germanium Sub-Microspheres Synthesized by Picosecond Pulsed Laser Melting in Liquids: Educt Size Effects.
    Zhang D; Lau M; Lu S; Barcikowski S; Gökce B
    Sci Rep; 2017 Jan; 7():40355. PubMed ID: 28084408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recrystallization of picosecond laser-melted ZnO nanoparticles in a liquid: a molecular dynamics study.
    Hu M; Poulikakos D; Grigoropoulos CP; Pan H
    J Chem Phys; 2010 Apr; 132(16):164504. PubMed ID: 20441285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bimodal Size Distribution of Gold Nanoparticles under Picosecond Laser Pulses.
    Inasawa S; Sugiyama M; Yamaguchi Y
    J Phys Chem B; 2005 May; 109(19):9404-10. PubMed ID: 16852127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of pulsed laser plasmon-assisted photothermal heating and bubble generation at the nanoscale.
    Furlani EP; Karampelas IH; Xie Q
    Lab Chip; 2012 Oct; 12(19):3707-19. PubMed ID: 22782691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ordered YBCO sub-micron array structures induced by pulsed femtosecond laser irradiation.
    Luo CW; Lee CC; Li CH; Shih HC; Chen YJ; Hsieh CC; Su CH; Tzeng WY; Wu KH; Juang JY; Uen TM; Chen SP; Lin JY; Kobayashi T
    Opt Express; 2008 Dec; 16(25):20610-6. PubMed ID: 19065200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model development and experimental validation for analyzing initial transients of irradiation of tissues during thermal therapy using short pulse lasers.
    Ganguly M; Miller S; Mitra K
    Lasers Surg Med; 2015 Nov; 47(9):711-22. PubMed ID: 26349633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-crystalline ZnO spherical particles by pulsed laser irradiation of colloidal nanoparticles for ultraviolet photodetection.
    Wang H; Pyatenko A; Koshizaki N; Moehwald H; Shchukin D
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2241-7. PubMed ID: 24533659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of a 595-nm with a 585-nm pulsed dye laser in refractory port wine stains.
    Yung A; Sheehan-Dare R
    Br J Dermatol; 2005 Sep; 153(3):601-6. PubMed ID: 16120150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.