These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 28052667)

  • 1. Use of Membrane Potential to Achieve Transmembrane Modification with an Artificial Receptor.
    Hatanaka W; Kawaguchi M; Sun X; Nagao Y; Ohshima H; Hashida M; Higuchi Y; Kishimura A; Katayama Y; Mori T
    Bioconjug Chem; 2017 Feb; 28(2):296-301. PubMed ID: 28052667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short peptide motifs for long-lasting anchoring to the cell surface.
    Matsuda M; Hatanaka W; Takeo M; Kim CW; Niidome T; Yamamoto T; Kishimura A; Mori T; Katayama Y
    Bioconjug Chem; 2014 Dec; 25(12):2134-43. PubMed ID: 25350362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligo(ethylene glycol)-modified β-cyclodextrin-based polyrotaxanes for simultaneously modulating solubility and cellular internalization efficiency.
    Tamura A; Ohashi M; Yui N
    J Biomater Sci Polym Ed; 2017; 28(10-12):1124-1139. PubMed ID: 28299982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid protein anchoring into the membranes of Mammalian cells using oleyl chain and poly(ethylene glycol) derivatives.
    Kato K; Itoh C; Yasukouchi T; Nagamune T
    Biotechnol Prog; 2004; 20(3):897-904. PubMed ID: 15176897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Penetration of amphiphilic quantum dots through model and cellular plasma membranes.
    Dubavik A; Sezgin E; Lesnyak V; Gaponik N; Schwille P; Eychmüller A
    ACS Nano; 2012 Mar; 6(3):2150-6. PubMed ID: 22303822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conjugation of polyethylene glycol via a disulfide bond confers water solubility upon a peptide model of a protein transmembrane segment.
    Pomroy NC; Deber CM
    Anal Biochem; 1999 Nov; 275(2):224-30. PubMed ID: 10552908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid Transmembrane Transport of DNA Nanostructures by Chemically Anchoring Artificial Receptors on Cell Membranes.
    Li M; Liu J; Deng M; Ge Z; Afshan N; Zuo X; Li Q
    Chempluschem; 2019 Apr; 84(4):323-327. PubMed ID: 31939210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Templated assembly of biomembranes on silica microspheres using bacteriorhodopsin conjugates as structural anchors.
    Sharma MK; Gilchrist ML
    Langmuir; 2007 Jun; 23(13):7101-12. PubMed ID: 17511484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and serum-insensitive endocytotic delivery of proteins using biotinylated polymers attached via multivalent hydrophobic anchors.
    Tobinaga K; Li C; Takeo M; Matsuda M; Nagai H; Niidome T; Yamamoto T; Kishimura A; Mori T; Katayama Y
    J Control Release; 2014 Mar; 177():27-33. PubMed ID: 24389131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of repulsive force and structure/dynamics of interfacial water in OEG-protein interactions: a molecular simulation study.
    He Y; Chang Y; Hower JC; Zheng J; Chen S; Jiang S
    Phys Chem Chem Phys; 2008 Sep; 10(36):5539-44. PubMed ID: 18956088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folate receptor-specific cell-cell adhesion by using a folate-modified peptide-based anchor.
    Nagai H; Hatanaka W; Matsuda M; Kishimura A; Katayama Y; Mori T
    J Biomater Sci Polym Ed; 2019 Aug; 30(11):983-993. PubMed ID: 31064276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Biomimetic Synthetic Receptor Selectively Recognising Fucose in Water.
    Francesconi O; Martinucci M; Badii L; Nativi C; Roelens S
    Chemistry; 2018 May; 24(26):6828-6836. PubMed ID: 29508931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of chitosan nanopores membranes for the transport of drugs.
    Li X; Nan K; Chen H; Xu Y
    Int J Pharm; 2011 Nov; 420(2):371-7. PubMed ID: 21907774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modification of polypropylene membrane by polyethylene glycol graft polymerization.
    Abednejad AS; Amoabediny G; Ghaee A
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():443-50. PubMed ID: 25063140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective Binding of Dopamine and Epinephrine in Water by Molecularly Imprinted Fluorescent Receptors.
    Duan L; Zhao Y
    Chem Asian J; 2020 Apr; 15(7):1035-1038. PubMed ID: 32043821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A threading receptor for polysaccharides.
    Mooibroek TJ; Casas-Solvas JM; Harniman RL; Renney CM; Carter TS; Crump MP; Davis AP
    Nat Chem; 2016 Jan; 8(1):69-74. PubMed ID: 26673266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor Extracellular pH-Driven Cancer-Selective Artificial Receptor-Mediated Tumor-Targeted Fluorescence Imaging.
    Guo Q; Wu Z; Peng Y; Peng W; Huang Q; Peng M; Huang N; Hu X; Fu T; Zhao Z; Tan W
    Anal Chem; 2019 Nov; 91(21):13349-13354. PubMed ID: 31588733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tackling lipophilicity of peptide drugs: replacement of the backbone N-methyl group of cilengitide by N-oligoethylene glycol (N-OEG) chains.
    Fernández-Llamazares AI; Adan J; Mitjans F; Spengler J; Albericio F
    Bioconjug Chem; 2014 Jan; 25(1):11-7. PubMed ID: 24328341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward mechanical manipulations of cell membranes and membrane proteins using an atomic force microscope: an invited review.
    Ikai A; Afrin R
    Cell Biochem Biophys; 2003; 39(3):257-77. PubMed ID: 14716080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of daunorubicin-GnRH-III bioconjugates with oligoethylene glycol derivatives to improve solubility and bioavailability for targeted cancer chemotherapy.
    Hegedüs R; Pauschert A; Orbán E; Szabó I; Andreu D; Marquardt A; Mező G; Manea M
    Biopolymers; 2015 May; 104(3):167-77. PubMed ID: 25753049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.