BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 28052871)

  • 21. Basal nitric oxide production curtails arteriolar vasoconstrictor responses to ANG II in rat kidney.
    Ikenaga H; Fallet RW; Carmines PK
    Am J Physiol; 1996 Aug; 271(2 Pt 2):F365-73. PubMed ID: 8770168
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Divergent roles of angiotensin II AT1 and AT2 receptors in modulating coronary microvascular function.
    Zhang C; Hein TW; Wang W; Kuo L
    Circ Res; 2003 Feb; 92(3):322-9. PubMed ID: 12595345
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vessel- and vasoconstrictor-dependent role of rho/rho-kinase in renal microvascular tone.
    Nakamura A; Hayashi K; Ozawa Y; Fujiwara K; Okubo K; Kanda T; Wakino S; Saruta T
    J Vasc Res; 2003; 40(3):244-51. PubMed ID: 12902637
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Angiotensin II-induced contraction is attenuated by nitric oxide in afferent arterioles from the nonclipped kidney in 2K1C.
    Helle F; Hultström M; Skogstrand T; Palm F; Iversen BM
    Am J Physiol Renal Physiol; 2009 Jan; 296(1):F78-86. PubMed ID: 18945823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Angiotensin II enhances the afferent arteriolar response to adenosine through increases in cytosolic calcium.
    Lai EY; Patzak A; Persson AE; Carlström M
    Acta Physiol (Oxf); 2009 Aug; 196(4):435-45. PubMed ID: 19141138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TP receptor-mediated vasoconstriction in microperfused afferent arterioles: roles of O(2)(-) and NO.
    Schnackenberg CG; Welch WJ; Wilcox CS
    Am J Physiol Renal Physiol; 2000 Aug; 279(2):F302-8. PubMed ID: 10919850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Endogenous nitric oxide and epoxyeicosatrienoic acids modulate angiotensin II-induced constriction in the rabbit afferent arteriole.
    Kohagura K; Endo Y; Ito O; Arima S; Omata K; Ito S
    Acta Physiol Scand; 2000 Jan; 168(1):107-12. PubMed ID: 10691787
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Angiotensin II response in afferent arterioles of mice lacking either the endothelial or neuronal isoform of nitric oxide synthase.
    Patzak A; Steege A; Lai EY; Brinkmann JO; Kupsch E; Spielmann N; Gericke A; Skalweit A; Stegbauer J; Persson PB; Seeliger E
    Am J Physiol Regul Integr Comp Physiol; 2008 Feb; 294(2):R429-37. PubMed ID: 17959704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Angiotensin II-mediated constriction of afferent and efferent arterioles involves T-type Ca2+ channel activation.
    Feng MG; Navar LG
    Am J Nephrol; 2004; 24(6):641-8. PubMed ID: 15627720
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Afferent and efferent arteriolar vasoconstriction to angiotensin II and norepinephrine involves release of Ca2+ from intracellular stores.
    Inscho EW; Imig JD; Cook AK
    Hypertension; 1997 Jan; 29(1 Pt 2):222-7. PubMed ID: 9039106
    [TBL] [Abstract][Full Text] [Related]  

  • 31. AT2-antagonist sensitive potentiation of angiotensin II-induced vasoconstrictions by blockade of nitric oxide synthesis in rat renal vasculature.
    Muller C; Endlich K; Barthelmebs M; Helwig JJ
    Br J Pharmacol; 1997 Dec; 122(7):1495-501. PubMed ID: 9421301
    [TBL] [Abstract][Full Text] [Related]  

  • 32. beta(1) Receptors protect the renal afferent arteriole of angiotensin-infused rabbits from norepinephrine-induced oxidative stress.
    Wang D; Jose P; Wilcox CS
    J Am Soc Nephrol; 2006 Dec; 17(12):3347-54. PubMed ID: 17108317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Roles of nitric oxide and oxidative stress in the regulation of blood pressure and renal function in prehypertensive Ren-2 transgenic rats.
    Vanecková I; Kramer HJ; Novotná J; Kazdová L; Opocenský M; Bader M; Ganten D; Cervenka L
    Kidney Blood Press Res; 2005; 28(2):117-26. PubMed ID: 15795515
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tempol selectively attenuates angiotensin II evoked vasoconstrictor responses in spontaneously hypertensive rats.
    Shastri S; Gopalakrishnan V; Poduri R; Di Wang H
    J Hypertens; 2002 Jul; 20(7):1381-91. PubMed ID: 12131535
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loss of biphasic effect on Na/K-ATPase activity by angiotensin II involves defective angiotensin type 1 receptor-nitric oxide signaling.
    Banday AA; Lokhandwala MF
    Hypertension; 2008 Dec; 52(6):1099-105. PubMed ID: 18955661
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facilitation of renal autoregulation by angiotensin II is mediated through modulation of nitric oxide.
    Guan Z; Willgoss DA; Matthias A; Manley SW; Crozier S; Gobe G; Endre ZH
    Acta Physiol Scand; 2003 Oct; 179(2):189-201. PubMed ID: 14510783
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitric oxide in afferent arterioles after uninephrectomy depends on extracellular L-arginine.
    Helle F; Skogstrand T; Schwartz IF; Schwartz D; Iversen BM; Palm F; Hultström M
    Am J Physiol Renal Physiol; 2013 Apr; 304(8):F1088-98. PubMed ID: 23408167
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuronal nitric oxide synthase modulates rat renal microvascular function.
    Ichihara A; Inscho EW; Imig JD; Navar LG
    Am J Physiol; 1998 Mar; 274(3):F516-24. PubMed ID: 9530268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contribution of renal purinergic receptors to renal vasoconstriction in angiotensin II-induced hypertensive rats.
    Franco M; Bautista R; Tapia E; Soto V; Santamaría J; Osorio H; Pacheco U; Sánchez-Lozada LG; Kobori H; Navar LG
    Am J Physiol Renal Physiol; 2011 Jun; 300(6):F1301-9. PubMed ID: 21367914
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relative roles of nitric oxide, prostanoids and angiotensin II in the regulation of canine glomerular hemodynamics. A micropuncture study.
    Kramer HJ; Horacek V; Bäcker A; Vaneckova I; Heller J
    Kidney Blood Press Res; 2004; 27(1):10-7. PubMed ID: 14583658
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.