These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 28052936)
21. Generation and analysis of knock-in mice carrying pseudohypoaldosteronism type II-causing mutations in the cullin 3 gene. Araki Y; Rai T; Sohara E; Mori T; Inoue Y; Isobe K; Kikuchi E; Ohta A; Sasaki S; Uchida S Biol Open; 2015 Oct; 4(11):1509-17. PubMed ID: 26490675 [TBL] [Abstract][Full Text] [Related]
22. Degradation by Cullin 3 and effect on WNK kinases suggest a role of KLHL2 in the pathogenesis of Familial Hyperkalemic Hypertension. Zhang C; Meermeier NP; Terker AS; Blankenstein KI; Singer JD; Hadchouel J; Ellison DH; Yang CL Biochem Biophys Res Commun; 2016 Jan; 469(1):44-48. PubMed ID: 26607111 [TBL] [Abstract][Full Text] [Related]
25. An inducible transgenic mouse model for familial hypertension with hyperkalaemia (Gordon's syndrome or pseudohypoaldosteronism type II). Chowdhury JA; Liu CH; Zuber AM; O'Shaughnessy KM Clin Sci (Lond); 2013 Jun; 124(12):701-8. PubMed ID: 23336180 [TBL] [Abstract][Full Text] [Related]
26. Unveiling the Distinct Mechanisms by which Disease-Causing Mutations in the Kelch Domain of KLHL3 Disrupt the Interaction with the Acidic Motif of WNK4 through Molecular Dynamics Simulation. Wang L; Jiang C; Cai R; Chen XZ; Peng JB Biochemistry; 2019 Apr; 58(16):2105-2115. PubMed ID: 30931564 [TBL] [Abstract][Full Text] [Related]
27. Regulation of blood pressure and renal electrolyte balance by Cullin-RING ligases. Uchida S Curr Opin Nephrol Hypertens; 2014 Sep; 23(5):487-93. PubMed ID: 24992566 [TBL] [Abstract][Full Text] [Related]
28. Regulation of with-no-lysine kinase signaling by Kelch-like proteins. Uchida S; Sohara E; Rai T; Sasaki S Biol Cell; 2014 Feb; 106(2):45-56. PubMed ID: 24313290 [TBL] [Abstract][Full Text] [Related]
29. A Novel Homozygous KLHL3 Mutation as a Cause of Autosomal Recessive Pseudohypoaldosteronism Type II Diagnosed Late in Life. Etges A; Hellmig N; Walenda G; Haddad BG; Machtens JP; Morosan T; Rump LC; Scholl UI Nephron; 2022; 146(4):418-428. PubMed ID: 35093948 [TBL] [Abstract][Full Text] [Related]
30. Angiotensin II signaling via protein kinase C phosphorylates Kelch-like 3, preventing WNK4 degradation. Shibata S; Arroyo JP; Castañeda-Bueno M; Puthumana J; Zhang J; Uchida S; Stone KL; Lam TT; Lifton RP Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15556-61. PubMed ID: 25313067 [TBL] [Abstract][Full Text] [Related]
31. A case report of pseudohypoaldosteronism type II with a homozygous KLHL3 variant accompanied by hyperthyroidism. Zhang R; Zhang S; Luo Y; Li M; Wen X; Cai X; Han X; Ji L BMC Endocr Disord; 2021 May; 21(1):103. PubMed ID: 34022862 [TBL] [Abstract][Full Text] [Related]
32. Structural and biochemical characterization of the KLHL3-WNK kinase interaction important in blood pressure regulation. Schumacher FR; Sorrell FJ; Alessi DR; Bullock AN; Kurz T Biochem J; 2014 Jun; 460(2):237-46. PubMed ID: 24641320 [TBL] [Abstract][Full Text] [Related]
34. Dual gain and loss of cullin 3 function mediates familial hyperkalemic hypertension. Cornelius RJ; Zhang C; Erspamer KJ; Agbor LN; Sigmund CD; Singer JD; Yang CL; Ellison DH Am J Physiol Renal Physiol; 2018 Oct; 315(4):F1006-F1018. PubMed ID: 29897280 [TBL] [Abstract][Full Text] [Related]
35. Detection of mutations in KLHL3 and CUL3 in families with FHHt (familial hyperkalaemic hypertension or Gordon's syndrome). Glover M; Ware JS; Henry A; Wolley M; Walsh R; Wain LV; Xu S; Van't Hoff WG; Tobin MD; Hall IP; Cook S; Gordon RD; Stowasser M; O'Shaughnessy KM Clin Sci (Lond); 2014 May; 126(10):721-6. PubMed ID: 24266877 [TBL] [Abstract][Full Text] [Related]
36. A mouse model of pseudohypoaldosteronism type II reveals a novel mechanism of renal tubular acidosis. López-Cayuqueo KI; Chavez-Canales M; Pillot A; Houillier P; Jayat M; Baraka-Vidot J; Trepiccione F; Baudrie V; Büsst C; Soukaseum C; Kumai Y; Jeunemaître X; Hadchouel J; Eladari D; Chambrey R Kidney Int; 2018 Sep; 94(3):514-523. PubMed ID: 30146013 [TBL] [Abstract][Full Text] [Related]
37. KLHL2 interacts with and ubiquitinates WNK kinases. Takahashi D; Mori T; Wakabayashi M; Mori Y; Susa K; Zeniya M; Sohara E; Rai T; Sasaki S; Uchida S Biochem Biophys Res Commun; 2013 Aug; 437(3):457-62. PubMed ID: 23838290 [TBL] [Abstract][Full Text] [Related]
38. Effect of heterozygous deletion of WNK1 on the WNK-OSR1/ SPAK-NCC/NKCC1/NKCC2 signal cascade in the kidney and blood vessels. Susa K; Kita S; Iwamoto T; Yang SS; Lin SH; Ohta A; Sohara E; Rai T; Sasaki S; Alessi DR; Uchida S Clin Exp Nephrol; 2012 Aug; 16(4):530-8. PubMed ID: 22294159 [TBL] [Abstract][Full Text] [Related]
39. Phenotypes of pseudohypoaldosteronism type II caused by the WNK4 D561A missense mutation are dependent on the WNK-OSR1/SPAK kinase cascade. Chiga M; Rafiqi FH; Alessi DR; Sohara E; Ohta A; Rai T; Sasaki S; Uchida S J Cell Sci; 2011 May; 124(Pt 9):1391-5. PubMed ID: 21486947 [TBL] [Abstract][Full Text] [Related]
40. Sequence and structural variations determining the recruitment of WNK kinases to the KLHL3 E3 ligase. Chen Z; Zhang J; Murillo-de-Ozores AR; Castañeda-Bueno M; D'Amico F; Heilig R; Manning CE; Sorrell FJ; D'Angiolella V; Fischer R; Mulder MPC; Gamba G; Alessi DR; Bullock AN Biochem J; 2022 Mar; 479(5):661-675. PubMed ID: 35179207 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]