These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28053058)

  • 1. Mouthpart conduit sizes of fluid-feeding insects determine the ability to feed from pores.
    Lehnert MS; Bennett A; Reiter KE; Gerard PD; Wei QH; Byler M; Yan H; Lee WK
    Proc Biol Sci; 2017 Jan; 284(1846):. PubMed ID: 28053058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Ingestion of Fluorescent, Magnetic Nanoparticles for Determining Fluid-uptake Abilities in Insects.
    Lehnert MS; Reiter KE; Bennett A; Gerard PD; Wei QH; Byler M; Yan H; Lee WK
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29286409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mouthpart separation does not impede butterfly feeding.
    Lehnert MS; Mulvane CP; Brothers A
    Arthropod Struct Dev; 2014 Mar; 43(2):97-102. PubMed ID: 24389004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Butterfly proboscis: combining a drinking straw with a nanosponge facilitated diversification of feeding habits.
    Monaenkova D; Lehnert MS; Andrukh T; Beard CE; Rubin B; Tokarev A; Lee WK; Adler PH; Kornev KG
    J R Soc Interface; 2012 Apr; 9(69):720-6. PubMed ID: 21849382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lepidopteran mouthpart architecture suggests a new mechanism of fluid uptake by insects with long proboscises.
    Salamatin AA; Adler PH; Kornev KG
    J Theor Biol; 2021 Feb; 510():110525. PubMed ID: 33065142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paradox of the drinking-straw model of the butterfly proboscis.
    Tsai CC; Monaenkova D; Beard CE; Adler PH; Kornev KG
    J Exp Biol; 2014 Jun; 217(Pt 12):2130-8. PubMed ID: 24920837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the lepidopteran proboscis in relation to feeding guild.
    Lehnert MS; Beard CE; Gerard PD; Kornev KG; Adler PH
    J Morphol; 2016 Feb; 277(2):167-82. PubMed ID: 26589780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological fine tuning of the feeding apparatus to proboscis length in Hesperiidae (Lepidoptera).
    Krenn HW; Bauder JA
    J Morphol; 2018 Mar; 279(3):396-408. PubMed ID: 29210100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural mouthpart interaction evolved already in the earliest lineages of insects.
    Blanke A; Rühr PT; Mokso R; Villanueva P; Wilde F; Stampanoni M; Uesugi K; Machida R; Misof B
    Proc Biol Sci; 2015 Aug; 282(1812):20151033. PubMed ID: 26203002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary functional morphology of the proboscis and feeding apparatus of hawk moths (Sphingidae: Lepidoptera).
    Reinwald C; Bauder JA; Karolyi F; Neulinger M; Jaros S; Metscher B; Krenn HW
    J Morphol; 2022 Nov; 283(11):1390-1410. PubMed ID: 36059242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Similarity and specialization of the larval versus adult diet of European butterflies and moths.
    Altermatt F; Pearse IS
    Am Nat; 2011 Sep; 178(3):372-82. PubMed ID: 21828993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of the butterfly proboscis: the role of capillary forces.
    Zhang C; Adler PH; Monaenkova D; Andrukh T; Pometto S; Beard CE; Kornev KG
    J R Soc Interface; 2018 Jul; 15(144):. PubMed ID: 30045890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of curvature on wetting and dewetting of proboscises of butterflies and moths.
    Zhang C; Beard CE; Adler PH; Kornev KG
    R Soc Open Sci; 2018 Jan; 5(1):171241. PubMed ID: 29410834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobic-hydrophilic dichotomy of the butterfly proboscis.
    Lehnert MS; Monaenkova D; Andrukh T; Beard CE; Adler PH; Kornev KG
    J R Soc Interface; 2013 Aug; 10(85):20130336. PubMed ID: 23760299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insect physiology: The mouthparts of moths and butterflies breathe through strategically positioned micropores.
    Hillyer JF
    Curr Biol; 2023 Jul; 33(14):R762-R764. PubMed ID: 37490861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pivotal role of aristaless in development and evolution of diverse antennal morphologies in moths and butterflies.
    Ando T; Fujiwara H; Kojima T
    BMC Evol Biol; 2018 Jan; 18(1):8. PubMed ID: 29370752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bridging the gap between chewing and sucking in the hemipteroid insects:
    new insights from Cretaceous amber.
    Yoshizawa K; Lienhard C
    Zootaxa; 2016 Feb; 4079(2):229-45. PubMed ID: 27396002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional constraints on the evolution of long butterfly proboscides: lessons from Neotropical skippers (Lepidoptera: Hesperiidae).
    Bauder JA; Morawetz L; Warren AD; Krenn HW
    J Evol Biol; 2015 Mar; 28(3):678-87. PubMed ID: 25682841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental analysis of the liquid-feeding mechanism of the butterfly Pieris rapae.
    Lee SC; Kim BH; Lee SJ
    J Exp Biol; 2014 Jun; 217(Pt 11):2013-9. PubMed ID: 24625646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural history of the mistletoe-feeding Thereus lomalarga (Lepidoptera, Lycaenidae, Eumaeini) in Colombia.
    Heredia MD; Robbins RK
    Zootaxa; 2016 Jun; 4117(3):301-20. PubMed ID: 27395176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.