These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 28053240)

  • 21. Alzheimer's disease affects parallel processing between the auditory cortices.
    Pekkonen E; Huotilainen M; Virtanen J; Näätänen R; Ilmoniemi RJ; Erkinjuntti T
    Neuroreport; 1996 May; 7(8):1365-8. PubMed ID: 8856676
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Auditory Streaming and Prediction in Tinnitus Sufferers.
    Durai M; Sanders M; Kobayashi K; Searchfield GD
    Ear Hear; 2019; 40(2):345-357. PubMed ID: 29933259
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The hypothetical relation between the degree of stress and auditory cortical evoked potentials in tinnitus sufferers.
    Moossavi A; Sadeghijam M; Akbari M
    Med Hypotheses; 2019 Sep; 130():109266. PubMed ID: 31383346
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The absence of resting-state high-gamma cross-frequency coupling in patients with tinnitus.
    Ahn MH; Hong SK; Min BK
    Hear Res; 2017 Dec; 356():63-73. PubMed ID: 29097049
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Auditory cortical basis of tinnitus.
    Hoke M; Pantev C; Lütkenhöner B; Lehnertz K
    Acta Otolaryngol Suppl; 1991; 491():176-81; discussion 182. PubMed ID: 1814151
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Auditory cortex tACS and tRNS for tinnitus: single versus multiple sessions.
    Claes L; Stamberger H; Van de Heyning P; De Ridder D; Vanneste S
    Neural Plast; 2014; 2014():436713. PubMed ID: 25587455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Auditory cortex responses to the transition from monophonic to pseudo-stereo sound.
    Ross B; Herdman AT; Wollbrink A; Pantev C
    Neurol Clin Neurophysiol; 2004 Nov; 2004():18. PubMed ID: 16012692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative analysis of cochlear active mechanisms in tinnitus subjects with normal hearing sensitivity: multiparametric recording of evoked otoacoustic emissions and contralateral suppression.
    Paglialonga A; Del Bo L; Ravazzani P; Tognola G
    Auris Nasus Larynx; 2010 Jun; 37(3):291-8. PubMed ID: 19879078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards an objective test of chronic tinnitus: Properties of auditory cortical potentials evoked by silent gaps in tinnitus-like sounds.
    Paul BT; Schoenwiesner M; Hébert S
    Hear Res; 2018 Sep; 366():90-98. PubMed ID: 29692331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrophysiological auditory measures to identify potential cortical markers of tinnitus.
    Caldwell J; Gopal K; Ortu D; Miller S
    Brain Res; 2024 Nov; 1842():149100. PubMed ID: 38942351
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Specific activation of operculum 3 (OP3) brain region during provoked tinnitus-related phantom auditory perceptions in humans.
    Job A; Jacob R; Pons Y; Raynal M; Kossowski M; Gauthier J; Lombard B; Delon-Martin C
    Brain Struct Funct; 2016 Mar; 221(2):913-22. PubMed ID: 25503643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Auditory temporal resolution in children assessed by magnetoencephalography.
    Diedler J; Pietz J; Bast T; Rupp A
    Neuroreport; 2007 Oct; 18(16):1691-5. PubMed ID: 17921870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Auditory Neural Plasticity in Tinnitus Mechanisms and Management.
    Wang K; Tang D; Ma J; Sun S
    Neural Plast; 2020; 2020():7438461. PubMed ID: 32684922
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of center frequency on binaural auditory filter bandwidth in the human brain.
    Soeta Y; Shimokura R; Nakagawa S
    Neuroreport; 2008 Nov; 19(17):1709-13. PubMed ID: 18841088
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuromagnetic indicators of auditory cortical reorganization of tinnitus.
    Weisz N; Wienbruch C; Dohrmann K; Elbert T
    Brain; 2005 Nov; 128(Pt 11):2722-31. PubMed ID: 16014655
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Change-related responses in the human auditory cortex: an MEG study.
    Yamashiro K; Inui K; Otsuru N; Kakigi R
    Psychophysiology; 2011 Jan; 48(1):23-30. PubMed ID: 20525009
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From objective to subjective: pitch representation in the human auditory cortex.
    Winkler I; Tervaniemi M; Huotilainen M; Ilmoniemi R; Ahonen A; Salonen O; Standertskjöld-Nordenstam CG; Näätänen R
    Neuroreport; 1995 Nov; 6(17):2317-20. PubMed ID: 8747145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Auditory temporal processes in normal-hearing individuals and in patients with auditory neuropathy.
    Michalewski HJ; Starr A; Nguyen TT; Kong YY; Zeng FG
    Clin Neurophysiol; 2005 Mar; 116(3):669-80. PubMed ID: 15721081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sound processing hierarchy within human auditory cortex.
    Okamoto H; Stracke H; Bermudez P; Pantev C
    J Cogn Neurosci; 2011 Aug; 23(8):1855-63. PubMed ID: 20521859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hearing suppression induced by electrical stimulation of human auditory cortex.
    Fenoy AJ; Severson MA; Volkov IO; Brugge JF; Howard MA
    Brain Res; 2006 Nov; 1118(1):75-83. PubMed ID: 16979144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.