BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28053665)

  • 1. Improved growth rate in
    Biswas R; Wilson CM; Giannone RJ; Klingeman DM; Rydzak T; Shah MB; Hettich RL; Brown SD; Guss AM
    Biotechnol Biofuels; 2017; 10():6. PubMed ID: 28053665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum.
    Biswas R; Zheng T; Olson DG; Lynd LR; Guss AM
    Biotechnol Biofuels; 2015; 8():20. PubMed ID: 25763101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum.
    Papanek B; Biswas R; Rydzak T; Guss AM
    Metab Eng; 2015 Nov; 32():49-54. PubMed ID: 26369438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributing factors in the improvement of cellulosic H2 production in Clostridium thermocellum/Thermoanaerobacterium co-cultures.
    Wang M; Zhao Q; Li L; Niu K; Li Y; Wang F; Jiang B; Liu K; Jiang Y; Fang X
    Appl Microbiol Biotechnol; 2016 Oct; 100(19):8607-20. PubMed ID: 27538932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clostridium thermocellum DSM 1313 transcriptional responses to redox perturbation.
    Sander K; Wilson CM; Rodriguez M; Klingeman DM; Rydzak T; Davison BH; Brown SD
    Biotechnol Biofuels; 2015; 8():211. PubMed ID: 26692898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum.
    Thompson RA; Layton DS; Guss AM; Olson DG; Lynd LR; Trinh CT
    Metab Eng; 2015 Nov; 32():207-219. PubMed ID: 26497628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum.
    Rydzak T; Garcia D; Stevenson DM; Sladek M; Klingeman DM; Holwerda EK; Amador-Noguez D; Brown SD; Guss AM
    Metab Eng; 2017 May; 41():182-191. PubMed ID: 28400329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic and proteomic changes from medium supplementation and strain evolution in high-yielding Clostridium thermocellum strains.
    Papanek B; O'Dell KB; Manga P; Giannone RJ; Klingeman DM; Hettich RL; Brown SD; Guss AM
    J Ind Microbiol Biotechnol; 2018 Nov; 45(11):1007-1015. PubMed ID: 30187243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression.
    Rydzak T; McQueen PD; Krokhin OV; Spicer V; Ezzati P; Dwivedi RC; Shamshurin D; Levin DB; Wilkins JA; Sparling R
    BMC Microbiol; 2012 Sep; 12():214. PubMed ID: 22994686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic and evolutionary responses of
    Holwerda EK; Olson DG; Ruppertsberger NM; Stevenson DM; Murphy SJL; Maloney MI; Lanahan AA; Amador-Noguez D; Lynd LR
    Biotechnol Biofuels; 2020; 13():40. PubMed ID: 32175007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laboratory Evolution and Reverse Engineering of
    Yayo J; Kuil T; Olson DG; Lynd LR; Holwerda EK; van Maris AJA
    Appl Environ Microbiol; 2021 Apr; 87(9):. PubMed ID: 33608285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LacI Transcriptional Regulatory Networks in Clostridium thermocellum DSM1313.
    Wilson CM; Klingeman DM; Schlachter C; Syed MH; Wu CW; Guss AM; Brown SD
    Appl Environ Microbiol; 2017 Mar; 83(5):. PubMed ID: 28003194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clostridium thermocellum transcriptomic profiles after exposure to furfural or heat stress.
    Wilson CM; Yang S; Rodriguez M; Ma Q; Johnson CM; Dice L; Xu Y; Brown SD
    Biotechnol Biofuels; 2013 Sep; 6(1):131. PubMed ID: 24028713
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Whitham JM; Moon JW; Rodriguez M; Engle NL; Klingeman DM; Rydzak T; Abel MM; Tschaplinski TJ; Guss AM; Brown SD
    Biotechnol Biofuels; 2018; 11():98. PubMed ID: 29632556
    [No Abstract]   [Full Text] [Related]  

  • 15. Genetic engineering of Clostridium thermocellum DSM1313 for enhanced ethanol production.
    Kannuchamy S; Mukund N; Saleena LM
    BMC Biotechnol; 2016 May; 16 Suppl 1(Suppl 1):34. PubMed ID: 27213504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elimination of formate production in Clostridium thermocellum.
    Rydzak T; Lynd LR; Guss AM
    J Ind Microbiol Biotechnol; 2015 Sep; 42(9):1263-72. PubMed ID: 26162629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum.
    Shao X; Raman B; Zhu M; Mielenz JR; Brown SD; Guss AM; Lynd LR
    Appl Microbiol Biotechnol; 2011 Nov; 92(3):641-52. PubMed ID: 21874277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endogenous carbohydrate esterases of Clostridium thermocellum are identified and disrupted for enhanced isobutyl acetate production from cellulose.
    Seo H; Nicely PN; Trinh CT
    Biotechnol Bioeng; 2020 Jul; 117(7):2223-2236. PubMed ID: 32333614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol tolerance of Clostridium thermocellum: the role of chaotropicity, temperature and pathway thermodynamics on growth and fermentative capacity.
    Kuil T; Yayo J; Pechan J; Küchler J; van Maris AJA
    Microb Cell Fact; 2022 Dec; 21(1):273. PubMed ID: 36567317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic analysis of Clostridium thermocellum Populus hydrolysate-tolerant mutant strain shows increased cellular efficiency in response to Populus hydrolysate compared to the wild type strain.
    Linville JL; Rodriguez M; Brown SD; Mielenz JR; Cox CD
    BMC Microbiol; 2014 Aug; 14():215. PubMed ID: 25128475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.