These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 28053668)

  • 1. Study of traits and recalcitrance reduction of field-grown
    Li M; Pu Y; Yoo CG; Gjersing E; Decker SR; Doeppke C; Shollenberger T; Tschaplinski TJ; Engle NL; Sykes RW; Davis MF; Baxter HL; Mazarei M; Fu C; Dixon RA; Wang ZY; Neal Stewart C; Ragauskas AJ
    Biotechnol Biofuels; 2017; 10():12. PubMed ID: 28053668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-year field analysis of reduced recalcitrance transgenic switchgrass.
    Baxter HL; Mazarei M; Labbe N; Kline LM; Cheng Q; Windham MT; Mann DG; Fu C; Ziebell A; Sykes RW; Rodriguez M; Davis MF; Mielenz JR; Dixon RA; Wang ZY; Stewart CN
    Plant Biotechnol J; 2014 Sep; 12(7):914-24. PubMed ID: 24751162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioavailability of Carbohydrate Content in Natural and Transgenic Switchgrasses for the Extreme Thermophile Caldicellulosiruptor bescii.
    Zurawski JV; Khatibi PA; Akinosho HO; Straub CT; Compton SH; Conway JM; Lee LL; Ragauskas AJ; Davison BH; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and Overexpression of a Knotted1-Like Transcription Factor in Switchgrass (Panicum virgatum L.) for Lignocellulosic Feedstock Improvement.
    Wuddineh WA; Mazarei M; Zhang JY; Turner GB; Sykes RW; Decker SR; Davis MF; Udvardi MK; Stewart CN
    Front Plant Sci; 2016; 7():520. PubMed ID: 27200006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass.
    Fu C; Mielenz JR; Xiao X; Ge Y; Hamilton CY; Rodriguez M; Chen F; Foston M; Ragauskas A; Bouton J; Dixon RA; Wang ZY
    Proc Natl Acad Sci U S A; 2011 Mar; 108(9):3803-8. PubMed ID: 21321194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of liquid hot water pretreatment on the chemical-structural alteration and the reduced recalcitrance in poplar.
    Li M; Cao S; Meng X; Studer M; Wyman CE; Ragauskas AJ; Pu Y
    Biotechnol Biofuels; 2017; 10():237. PubMed ID: 29213308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Downregulation of pectin biosynthesis gene
    Li M; Yoo CG; Pu Y; Biswal AK; Tolbert AK; Mohnen D; Ragauskas AJ
    Commun Biol; 2019; 2():22. PubMed ID: 30675520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Downregulation of a UDP-Arabinomutase Gene in Switchgrass (
    Willis JD; Smith JA; Mazarei M; Zhang JY; Turner GB; Decker SR; Sykes RW; Poovaiah CR; Baxter HL; Mann DG; Davis MF; Udvardi MK; Peña MJ; Backe J; Bar-Peled M; Stewart CN
    Front Plant Sci; 2016; 7():1580. PubMed ID: 27833622
    [No Abstract]   [Full Text] [Related]  

  • 9. Evaluation of the bioconversion of genetically modified switchgrass using simultaneous saccharification and fermentation and a consolidated bioprocessing approach.
    Yee KL; Rodriguez M; Tschaplinski TJ; Engle NL; Martin MZ; Fu C; Wang ZY; Hamilton-Brehm SD; Mielenz JR
    Biotechnol Biofuels; 2012 Nov; 5(1):81. PubMed ID: 23146305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An In-Depth Understanding of Biomass Recalcitrance Using Natural Poplar Variants as the Feedstock.
    Meng X; Pu Y; Yoo CG; Li M; Bali G; Park DY; Gjersing E; Davis MF; Muchero W; Tuskan GA; Tschaplinski TJ; Ragauskas AJ
    ChemSusChem; 2017 Jan; 10(1):139-150. PubMed ID: 27882723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overcoming biomass recalcitrance by combining genetically modified switchgrass and cellulose solvent-based lignocellulose pretreatment.
    Sathitsuksanoh N; Xu B; Zhao B; Zhang YH
    PLoS One; 2013; 8(9):e73523. PubMed ID: 24086283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA interference suppression of lignin biosynthesis increases fermentable sugar yields for biofuel production from field-grown sugarcane.
    Jung JH; Vermerris W; Gallo M; Fedenko JR; Erickson JE; Altpeter F
    Plant Biotechnol J; 2013 Aug; 11(6):709-16. PubMed ID: 23551338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous regulation of F5H in COMT-RNAi transgenic switchgrass alters effects of COMT suppression on syringyl lignin biosynthesis.
    Wu Z; Wang N; Hisano H; Cao Y; Wu F; Liu W; Bao Y; Wang ZY; Fu C
    Plant Biotechnol J; 2019 Apr; 17(4):836-845. PubMed ID: 30267599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection.
    Rayaprolu L; Selvanayagam S; Rao DM; Gupta R; Das RR; Rathore A; Gandham P; Kiranmayee KNSU; Deshpande SP; Are AK
    Protein Pept Lett; 2021; 28(8):909-928. PubMed ID: 33588716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and use of a switchgrass (
    Nelson RS; Stewart CN; Gou J; Holladay S; Gallego-Giraldo L; Flanagan A; Mann DGJ; Hisano H; Wuddineh WA; Poovaiah CR; Srivastava A; Biswal AK; Shen H; Escamilla-Treviño LL; Yang J; Hardin CF; Nandakumar R; Fu C; Zhang J; Xiao X; Percifield R; Chen F; Bennetzen JL; Udvardi M; Mazarei M; Dixon RA; Wang ZY; Tang Y; Mohnen D; Davison BH
    Biotechnol Biofuels; 2017; 10():309. PubMed ID: 29299059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of field-grown transgenic switchgrass carbon inputs on soil organic carbon cycling.
    Xu S; Ottinger SL; Schaeffer SM; DeBruyn JM; Stewart CN; Mazarei M; Jagadamma S
    PeerJ; 2019; 7():e7887. PubMed ID: 31637134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Down-regulation of OsMYB103L distinctively alters beta-1,4-glucan polymerization and cellulose microfibers assembly for enhanced biomass enzymatic saccharification in rice.
    Wu L; Zhang M; Zhang R; Yu H; Wang H; Li J; Wang Y; Hu Z; Wang Y; Luo Z; Li L; Wang L; Peng L; Xia T
    Biotechnol Biofuels; 2021 Dec; 14(1):245. PubMed ID: 34961560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomass augmentation through thermochemical pretreatments greatly enhances digestion of switchgrass by
    Kothari N; Holwerda EK; Cai CM; Kumar R; Wyman CE
    Biotechnol Biofuels; 2018; 11():219. PubMed ID: 30087696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transgenic switchgrass (Panicum virgatum L.) targeted for reduced recalcitrance to bioconversion: a 2-year comparative analysis of field-grown lines modified for target gene or genetic element expression.
    Dumitrache A; Natzke J; Rodriguez M; Yee KL; Thompson OA; Poovaiah CR; Shen H; Mazarei M; Baxter HL; Fu C; Wang ZY; Biswal AK; Li G; Srivastava AC; Tang Y; Stewart CN; Dixon RA; Nelson RS; Mohnen D; Mielenz J; Brown SD; Davison BH
    Plant Biotechnol J; 2017 Jun; 15(6):688-697. PubMed ID: 27862852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silencing of 4-coumarate:coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production.
    Xu B; Escamilla-Treviño LL; Sathitsuksanoh N; Shen Z; Shen H; Zhang YH; Dixon RA; Zhao B
    New Phytol; 2011 Nov; 192(3):611-25. PubMed ID: 21790609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.