These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28054061)

  • 1. Interaction between in vivo bioluminescence and extracellular electron transfer in Shewanella woodyi via charge and discharge.
    Tian X; Zhao F; You L; Wu X; Zheng Z; Wu R; Jiang Y; Sun S
    Phys Chem Chem Phys; 2017 Jan; 19(3):1746-1750. PubMed ID: 28054061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Cysteine Pair Controls Flavin Reduction by Extracellular Cytochromes during Anoxic/Oxic Environmental Transitions.
    Norman MP; Edwards MJ; White GF; Burton JAJ; Butt JN; Richardson DJ; Louro RO; Paquete CM; Clarke TA
    mBio; 2023 Feb; 14(1):e0258922. PubMed ID: 36645302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracking Electron Uptake from a Cathode into
    Rowe AR; Rajeev P; Jain A; Pirbadian S; Okamoto A; Gralnick JA; El-Naggar MY; Nealson KH
    mBio; 2018 Feb; 9(1):. PubMed ID: 29487241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4.
    Ding CM; Lv ML; Zhu Y; Jiang L; Liu H
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1446-51. PubMed ID: 25470810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soluble electron acceptors affect bioluminescence from Shewanella woodyi.
    Theberge AL; Alsabia SM; Mortensen CT; Blair AG; Wendel NM; Biffinger JC
    Luminescence; 2020 May; 35(3):427-433. PubMed ID: 31828931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1.
    Wu C; Cheng YY; Li BB; Li WW; Li DB; Yu HQ
    Bioresour Technol; 2013 May; 136():711-4. PubMed ID: 23558182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH.
    Okamoto A; Kalathil S; Deng X; Hashimoto K; Nakamura R; Nealson KH
    Sci Rep; 2014 Jul; 4():5628. PubMed ID: 25012073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Humic acid-enhanced electron transfer of in vivo cytochrome c as revealed by electrochemical and spectroscopic approaches.
    Tang J; Liu Y; Yuan Y; Zhou S
    J Environ Sci (China); 2014 May; 26(5):1118-24. PubMed ID: 25079642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Study on the Extracellular Electron Transfer Pathway from Shewanella Strain Hac319 to Electrodes.
    Takeuchi R; Sugimoto Y; Kitazumi Y; Shirai O; Ogawa J; Kano K
    Anal Sci; 2018 Oct; 34(10):1177-1182. PubMed ID: 29910222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones.
    Okamoto A; Hashimoto K; Nealson KH; Nakamura R
    Proc Natl Acad Sci U S A; 2013 May; 110(19):7856-61. PubMed ID: 23576738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrolocation? The evidence for redox-mediated taxis in Shewanella oneidensis.
    Starwalt-Lee R; El-Naggar MY; Bond DR; Gralnick JA
    Mol Microbiol; 2021 Jun; 115(6):1069-1079. PubMed ID: 33200455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facilitated extracellular electron transfer of Shewanella loihica PV-4 by antimony-doped tin oxide nanoparticles as active microelectrodes.
    Zhang X; Liu H; Wang J; Ren G; Xie B; Liu H; Zhu Y; Jiang L
    Nanoscale; 2015 Nov; 7(44):18763-9. PubMed ID: 26505239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secretion of flavins by Shewanella species and their role in extracellular electron transfer.
    von Canstein H; Ogawa J; Shimizu S; Lloyd JR
    Appl Environ Microbiol; 2008 Feb; 74(3):615-23. PubMed ID: 18065612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces.
    Gross BJ; El-Naggar MY
    Rev Sci Instrum; 2015 Jun; 86(6):064301. PubMed ID: 26133851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bound Flavin-Cytochrome Model of Extracellular Electron Transfer in Shewanella oneidensis: Analysis by Free Energy Molecular Dynamics Simulations.
    Hong G; Pachter R
    J Phys Chem B; 2016 Jun; 120(25):5617-24. PubMed ID: 27266856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flavin mononucleotide mediated electron pathway for microbial U(VI) reduction.
    Suzuki Y; Kitatsuji Y; Ohnuki T; Tsujimura S
    Phys Chem Chem Phys; 2010 Sep; 12(34):10081-7. PubMed ID: 20623083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Bidirectional Electron Transfer of Shewanella oneidensis by a Synthetic Flavin Pathway.
    Yang Y; Ding Y; Hu Y; Cao B; Rice SA; Kjelleberg S; Song H
    ACS Synth Biol; 2015 Jul; 4(7):815-23. PubMed ID: 25621739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flavin redox bifurcation as a mechanism for controlling the direction of electron flow during extracellular electron transfer.
    Okamoto A; Hashimoto K; Nealson KH
    Angew Chem Int Ed Engl; 2014 Oct; 53(41):10988-91. PubMed ID: 25156475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of bacterial luciferase into poly(N-isopropylacrylamide) film for electrochemical control of a bioluminescence reaction.
    Kawanami Y; Yamasaki S; Yamada S; Takehara K
    Anal Sci; 2012; 28(10):1013-5. PubMed ID: 23059999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical Detection of Deuterium Kinetic Isotope Effect on Extracellular Electron Transport in Shewanella oneidensis MR-1.
    Tokunou Y; Hashimoto K; Okamoto A
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29708543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.