BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28054418)

  • 1. Could the peristaltic transition zone be caused by non-uniform esophageal muscle fiber architecture? A simulation study.
    Kou W; Pandolfino JE; Kahrilas PJ; Patankar NA
    Neurogastroenterol Motil; 2017 Jun; 29(6):. PubMed ID: 28054418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topography of normal and high-amplitude esophageal peristalsis.
    Clouse RE; Staiano A
    Am J Physiol; 1993 Dec; 265(6 Pt 1):G1098-1107. PubMed ID: 8279561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiology of the esophageal pressure transition zone: separate contraction waves above and below.
    Ghosh SK; Janiak P; Schwizer W; Hebbard GS; Brasseur JG
    Am J Physiol Gastrointest Liver Physiol; 2006 Mar; 290(3):G568-76. PubMed ID: 16282364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle shortening along the normal esophagus during swallowing.
    Dai Q; Korimilli A; Thangada VK; Chung CY; Parkman H; Brasseur J; Miller LS
    Dig Dis Sci; 2006 Jan; 51(1):105-9. PubMed ID: 16416220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanical advantage of local longitudinal shortening on peristaltic transport.
    Pal A; Brasseur JG
    J Biomech Eng; 2002 Feb; 124(1):94-100. PubMed ID: 11871611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local longitudinal muscle shortening of the human esophagus from high-frequency ultrasonography.
    Nicosia MA; Brasseur JG; Liu JB; Miller LS
    Am J Physiol Gastrointest Liver Physiol; 2001 Oct; 281(4):G1022-33. PubMed ID: 11557523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Function of longitudinal vs circular muscle fibers in esophageal peristalsis, deduced with mathematical modeling.
    Brasseur JG; Nicosia MA; Pal A; Miller LS
    World J Gastroenterol; 2007 Mar; 13(9):1335-46. PubMed ID: 17457963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Velocity of peristaltic propagation in distal esophageal segments.
    Clouse RE; Hallett JL
    Dig Dis Sci; 1995 Jun; 40(6):1311-6. PubMed ID: 7781453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of increased intra-abdominal pressure on peristalsis in feline esophagus.
    Ren JL; Dodds WJ; Martin CJ; Dantas RO; Mittal RK; Harrington SS; Kern MK; Brasseur JG
    Am J Physiol; 1991 Sep; 261(3 Pt 1):G417-25. PubMed ID: 1887890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topography of the esophageal peristaltic pressure wave.
    Clouse RE; Staiano A
    Am J Physiol; 1991 Oct; 261(4 Pt 1):G677-84. PubMed ID: 1928353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of time interval between swallows on esophageal peristalsis.
    Ask P; Tibbling L
    Am J Physiol; 1980 Jun; 238(6):G485-90. PubMed ID: 7386632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between esophageal muscle thickness and intraluminal pressure: an ultrasonographic study.
    Pehlivanov N; Liu J; Kassab GS; Puckett JL; Mittal RK
    Am J Physiol Gastrointest Liver Physiol; 2001 Jun; 280(6):G1093-8. PubMed ID: 11352801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying esophageal peristalsis with high-resolution manometry: a study of 75 asymptomatic volunteers.
    Ghosh SK; Pandolfino JE; Zhang Q; Jarosz A; Shah N; Kahrilas PJ
    Am J Physiol Gastrointest Liver Physiol; 2006 May; 290(5):G988-97. PubMed ID: 16410365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of manometric assembly diameter on intraluminal esophageal pressure recording.
    Lydon SB; Dodds WJ; Hogan WJ; Arndorfer RC
    Am J Dig Dis; 1975 Oct; 20(10):968-70. PubMed ID: 1190207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation studies of the role of esophageal mucosa in bolus transport.
    Kou W; Pandolfino JE; Kahrilas PJ; Patankar NA
    Biomech Model Mechanobiol; 2017 Jun; 16(3):1001-1009. PubMed ID: 28050744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of feline esophageal contractions by bolus volume and outflow obstruction.
    Mittal RK; Ren J; McCallum RW; Shaffer HA; Sluss J
    Am J Physiol; 1990 Feb; 258(2 Pt 1):G208-15. PubMed ID: 2305886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation studies of circular muscle contraction, longitudinal muscle shortening, and their coordination in esophageal transport.
    Kou W; Pandolfino JE; Kahrilas PJ; Patankar NA
    Am J Physiol Gastrointest Liver Physiol; 2015 Aug; 309(4):G238-47. PubMed ID: 26113296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element simulation of food transport through the esophageal body.
    Yang W; Fung TC; Chian KS; Chong CK
    World J Gastroenterol; 2007 Mar; 13(9):1352-9. PubMed ID: 17457965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyses of normal and abnormal esophageal transport using computer simulations.
    Li M; Brasseur JG; Dodds WJ
    Am J Physiol; 1994 Apr; 266(4 Pt 1):G525-43. PubMed ID: 8178991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Timing, propagation, coordination, and effect of esophageal shortening during peristalsis.
    Pouderoux P; Lin S; Kahrilas PJ
    Gastroenterology; 1997 Apr; 112(4):1147-54. PubMed ID: 9097997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.