These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 28054497)
1. The Lipopolysaccharide Lipid A Long-Chain Fatty Acid Is Important for Rhizobium leguminosarum Growth and Stress Adaptation in Free-Living and Nodule Environments. Bourassa DV; Kannenberg EL; Sherrier DJ; Buhr RJ; Carlson RW Mol Plant Microbe Interact; 2017 Feb; 30(2):161-175. PubMed ID: 28054497 [TBL] [Abstract][Full Text] [Related]
2. The pea nodule environment restores the ability of a Rhizobium leguminosarum lipopolysaccharide acpXL mutant to add 27-hydroxyoctacosanoic acid to its lipid A. Vedam V; Kannenberg E; Datta A; Brown D; Haynes-Gann JG; Sherrier DJ; Carlson RW J Bacteriol; 2006 Mar; 188(6):2126-33. PubMed ID: 16513742 [TBL] [Abstract][Full Text] [Related]
4. A Rhizobium leguminosarum lipopolysaccharide lipid-A mutant induces nitrogen-fixing nodules with delayed and defective bacteroid formation. Vedam V; Haynes JG; Kannenberg EL; Carlson RW; Sherrier DJ Mol Plant Microbe Interact; 2004 Mar; 17(3):283-91. PubMed ID: 15000395 [TBL] [Abstract][Full Text] [Related]
5. Expression cloning and characterization of the C28 acyltransferase of lipid A biosynthesis in Rhizobium leguminosarum. Basu SS; Karbarz MJ; Raetz CR J Biol Chem; 2002 Aug; 277(32):28959-71. PubMed ID: 12019272 [TBL] [Abstract][Full Text] [Related]
6. Genetic analysis reveals links between lipid A structure and expression of the outer membrane protein gene, ropB, in Rhizobium leguminosarum. Vanderlinde EM; Yost CK FEMS Microbiol Lett; 2012 Oct; 335(2):130-9. PubMed ID: 22845832 [TBL] [Abstract][Full Text] [Related]
7. Lipid A and O-chain modifications cause Rhizobium lipopolysaccharides to become hydrophobic during bacteroid development. Kannenberg EL; Carlson RW Mol Microbiol; 2001 Jan; 39(2):379-91. PubMed ID: 11136459 [TBL] [Abstract][Full Text] [Related]
8. Sinorhizobium meliloti acpXL mutant lacks the C28 hydroxylated fatty acid moiety of lipid A and does not express a slow migrating form of lipopolysaccharide. Sharypova LA; Niehaus K; Scheidle H; Holst O; Becker A J Biol Chem; 2003 Apr; 278(15):12946-54. PubMed ID: 12566460 [TBL] [Abstract][Full Text] [Related]
9. Induction of host defences by Rhizobium during ineffective nodulation of pea (Pisum sativum L.) carrying symbiotically defective mutations sym40 (PsEFD), sym33 (PsIPD3/PsCYCLOPS) and sym42. Ivanova KA; Tsyganova AV; Brewin NJ; Tikhonovich IA; Tsyganov VE Protoplasma; 2015 Nov; 252(6):1505-17. PubMed ID: 25743038 [TBL] [Abstract][Full Text] [Related]
10. An acpXL mutant of Rhizobium leguminosarum bv. phaseoli lacks 27-hydroxyoctacosanoic acid in its lipid A and is developmentally delayed during symbiotic infection of the determinate nodulating host plant Phaseolus vulgaris. Brown DB; Huang YC; Kannenberg EL; Sherrier DJ; Carlson RW J Bacteriol; 2011 Sep; 193(18):4766-78. PubMed ID: 21764936 [TBL] [Abstract][Full Text] [Related]
11. Rhizobium leguminosarum biovar viciae 3841, deficient in 27-hydroxyoctacosanoate-modified lipopolysaccharide, is impaired in desiccation tolerance, biofilm formation and motility. Vanderlinde EM; Muszyński A; Harrison JJ; Koval SF; Foreman DL; Ceri H; Kannenberg EL; Carlson RW; Yost CK Microbiology (Reading); 2009 Sep; 155(Pt 9):3055-3069. PubMed ID: 19460825 [TBL] [Abstract][Full Text] [Related]
12. Proteome Analysis Reveals a Significant Host-Specific Response in Rhizobium leguminosarum bv. viciae Endosymbiotic Cells. Durán D; Albareda M; García C; Marina AI; Ruiz-Argüeso T; Palacios JM Mol Cell Proteomics; 2021; 20():100009. PubMed ID: 33214187 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic analysis of Rhizobium leguminosarum biovar viciae in symbiosis with host plants Pisum sativum and Vicia cracca. Karunakaran R; Ramachandran VK; Seaman JC; East AK; Mouhsine B; Mauchline TH; Prell J; Skeffington A; Poole PS J Bacteriol; 2009 Jun; 191(12):4002-14. PubMed ID: 19376875 [TBL] [Abstract][Full Text] [Related]
14. Electrophoretic profiles of lipopolysaccharides from Rhizobium strains nodulating Pisum sativum do not reflect phylogenetic relationships between these strains. Kutkowska J; Marek-Kozaczuk M; Wielbo J; Wójcik M; Urbanik-Sypniewska T Arch Microbiol; 2017 Sep; 199(7):1011-1021. PubMed ID: 28386666 [TBL] [Abstract][Full Text] [Related]
15. Mutation of the sensor kinase chvG in Rhizobium leguminosarum negatively impacts cellular metabolism, outer membrane stability, and symbiosis. Vanderlinde EM; Yost CK J Bacteriol; 2012 Feb; 194(4):768-77. PubMed ID: 22155778 [TBL] [Abstract][Full Text] [Related]
16. Transcriptomic analysis of Rhizobium leguminosarum bacteroids in determinate and indeterminate nodules. Green RT; East AK; Karunakaran R; Downie JA; Poole PS Microb Genom; 2019 Feb; 5(2):. PubMed ID: 30777812 [TBL] [Abstract][Full Text] [Related]
17. Failure to fix nitrogen by non-reproductive symbiotic rhizobia triggers host sanctions that reduce fitness of their reproductive clonemates. Oono R; Anderson CG; Denison RF Proc Biol Sci; 2011 Sep; 278(1718):2698-703. PubMed ID: 21270038 [TBL] [Abstract][Full Text] [Related]
18. Analysis of nodule senescence in pea (Pisum sativum L.) using laser microdissection, real-time PCR, and ACC immunolocalization. Serova TA; Tikhonovich IA; Tsyganov VE J Plant Physiol; 2017 May; 212():29-44. PubMed ID: 28242415 [TBL] [Abstract][Full Text] [Related]
19. Legumes regulate Rhizobium bacteroid development and persistence by the supply of branched-chain amino acids. Prell J; White JP; Bourdes A; Bunnewell S; Bongaerts RJ; Poole PS Proc Natl Acad Sci U S A; 2009 Jul; 106(30):12477-82. PubMed ID: 19597156 [TBL] [Abstract][Full Text] [Related]
20. [The influence of lipopolysaccharides and glucans from two Rhizobium leguminosarum bv. viciae strains on the formation and efficiency of their symbioses with pea plants]. Antipchuk AF; Kosenko LV Mikrobiologiia; 2004; 73(1):62-7. PubMed ID: 15074042 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]