These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28054569)

  • 1. New pieces to an old puzzle: identifying the warfarin-binding site that prevents clotting.
    Hilton JK; Van Horn WD
    Nat Struct Mol Biol; 2017 Jan; 24(1):5-6. PubMed ID: 28054569
    [No Abstract]   [Full Text] [Related]  

  • 2. Stabilization of warfarin-binding pocket of VKORC1 and VKORL1 by a peripheral region determines their different sensitivity to warfarin inhibition.
    Shen G; Li S; Cui W; Liu S; Liu Q; Yang Y; Gross M; Li W
    J Thromb Haemost; 2018 Jun; 16(6):1164-1175. PubMed ID: 29665197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VKORC1 and VKORC1L1 have distinctly different oral anticoagulant dose-response characteristics and binding sites.
    Czogalla KJ; Liphardt K; Höning K; Hornung V; Biswas A; Watzka M; Oldenburg J
    Blood Adv; 2018 Mar; 2(6):691-702. PubMed ID: 29581108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Warfarin and vitamin K compete for binding to Phe55 in human VKOR.
    Czogalla KJ; Biswas A; Höning K; Hornung V; Liphardt K; Watzka M; Oldenburg J
    Nat Struct Mol Biol; 2017 Jan; 24(1):77-85. PubMed ID: 27941861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VKORC1L1, An Enzyme Mediating the Effect of Vitamin K in Liver and Extrahepatic Tissues.
    Lacombe J; Ferron M
    Nutrients; 2018 Jul; 10(8):. PubMed ID: 30050002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Warfarin and vitamin K epoxide reductase: a molecular accounting for observed inhibition.
    Wu S; Chen X; Jin DY; Stafford DW; Pedersen LG; Tie JK
    Blood; 2018 Aug; 132(6):647-657. PubMed ID: 29743176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Warfarin traps human vitamin K epoxide reductase in an intermediate state during electron transfer.
    Shen G; Cui W; Zhang H; Zhou F; Huang W; Liu Q; Yang Y; Li S; Bowman GR; Sadler JE; Gross ML; Li W
    Nat Struct Mol Biol; 2017 Jan; 24(1):69-76. PubMed ID: 27918545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship between the vitamin K cycle inhibition and the plasma anticoagulant response at steady-state S-warfarin conditions in the rat.
    Mosterd JJ; Thijssen HH
    J Pharmacol Exp Ther; 1992 Mar; 260(3):1081-5. PubMed ID: 1545379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and toxicological studies of in vivo anticoagulant activity of novel 3-(1-aminoethylidene)chroman-2,4-diones and 4-hydroxy-3-(1-iminoethyl)-2H-chromen-2-ones combined with a structure-based 3-D pharmacophore model.
    Stanković N; Mladenović M; Mihailović M; Arambašić J; Uskoković A; Stanković V; Mihailović V; Katanić J; Matić S; Solujić S; Vuković N; Sukdolak S
    Eur J Pharm Sci; 2014 May; 55():20-35. PubMed ID: 24468630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cellular system for quantitation of vitamin K cycle activity: structure-activity effects on vitamin K antagonism by warfarin metabolites.
    Haque JA; McDonald MG; Kulman JD; Rettie AE
    Blood; 2014 Jan; 123(4):582-9. PubMed ID: 24297869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of coagulation factor, vitamin K epoxide reductase complex subunit 1, and cytochrome P450 2C9 gene polymorphisms on warfarin dose requirements.
    Aquilante CL; Langaee TY; Lopez LM; Yarandi HN; Tromberg JS; Mohuczy D; Gaston KL; Waddell CD; Chirico MJ; Johnson JA
    Clin Pharmacol Ther; 2006 Apr; 79(4):291-302. PubMed ID: 16580898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pharmacogenomics of warfarin (Coumadin) administration.
    Ruano G; Bower B
    Conn Med; 2006 Apr; 70(4):251-2. PubMed ID: 16768072
    [No Abstract]   [Full Text] [Related]  

  • 13. Structural and functional insights into human vitamin K epoxide reductase and vitamin K epoxide reductase-like1.
    Van Horn WD
    Crit Rev Biochem Mol Biol; 2013; 48(4):357-72. PubMed ID: 23631591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of (R)- and (S)-warfarin, vitamin K and vitamin K epoxide upon warfarin anticoagulation.
    Kamali F; Edwards C; Butler TJ; Wynne HA
    Thromb Haemost; 2000 Jul; 84(1):39-42. PubMed ID: 10928467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Warfarin anticoagulation in children: is there a role for a personalized approach to dosing?
    Biss TT; Kamali F
    Pharmacogenomics; 2012 Aug; 13(11):1211-4. PubMed ID: 22920389
    [No Abstract]   [Full Text] [Related]  

  • 16. Synthesis and structure-activity relationships of novel warfarin derivatives.
    Gebauer M
    Bioorg Med Chem; 2007 Mar; 15(6):2414-20. PubMed ID: 17275317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural forms of phenprocoumon and warfarin that are metabolized at the active site of CYP2C9.
    He M; Korzekwa KR; Jones JP; Rettie AE; Trager WF
    Arch Biochem Biophys; 1999 Dec; 372(1):16-28. PubMed ID: 10562412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting multiple enzymes in vitamin K metabolism for anticoagulation.
    Li W
    J Thromb Haemost; 2021 Mar; 19(3):633-636. PubMed ID: 33650246
    [No Abstract]   [Full Text] [Related]  

  • 19. Structural basis of antagonizing the vitamin K catalytic cycle for anticoagulation.
    Liu S; Li S; Shen G; Sukumar N; Krezel AM; Li W
    Science; 2021 Jan; 371(6524):. PubMed ID: 33154105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serum albumin binding analysis and toxicological screening of novel chroman-2,4-diones as oral anticoagulants.
    Stanković N; Mladenović M; Matić S; Stanić S; Stanković V; Mihailović M; Mihailović V; Katanić J; Boroja T; Vuković N; Sukdolak S
    Chem Biol Interact; 2015 Feb; 227():18-31. PubMed ID: 25499135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.