These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28054692)

  • 21. Monitoring galvanic replacement through three-dimensional morphological and chemical mapping.
    Goris B; Polavarapu L; Bals S; Van Tendeloo G; Liz-Marzán LM
    Nano Lett; 2014 Jun; 14(6):3220-6. PubMed ID: 24798989
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Real-Time Imaging of the Formation of Au-Ag Core-Shell Nanoparticles.
    Tan SF; Chee SW; Lin G; Bosman M; Lin M; Mirsaidov U; Nijhuis CA
    J Am Chem Soc; 2016 Apr; 138(16):5190-3. PubMed ID: 27043921
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Galvanic replacement reactions of active-metal nanoparticles.
    Niu KY; Kulinich SA; Yang J; Zhu AL; Du XW
    Chemistry; 2012 Apr; 18(14):4234-41. PubMed ID: 22374832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cage-bell Pt-Pd nanostructures with enhanced catalytic properties and superior methanol tolerance for oxygen reduction reaction.
    Chen D; Ye F; Liu H; Yang J
    Sci Rep; 2016 Apr; 6():24600. PubMed ID: 27079897
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Galvanic Replacement-Driven Transformations of Atomically Intermixed Bimetallic Colloidal Nanocrystals: Effects of Compositional Stoichiometry and Structural Ordering.
    Li GG; Sun M; Villarreal E; Pandey S; Phillpot SR; Wang H
    Langmuir; 2018 Apr; 34(14):4340-4350. PubMed ID: 29566338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of CuTCNQ/Au microrods by galvanic replacement of semiconducting phase I CuTCNQ with KAuBr4 in aqueous medium.
    Pearson A; O'Mullane AP; Bhargava SK; Bansal V
    Inorg Chem; 2012 Aug; 51(16):8791-801. PubMed ID: 22853734
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Galvanic Replacement Synthesis of Metal Nanostructures: Bridging the Gap between Chemical and Electrochemical Approaches.
    Cheng H; Wang C; Qin D; Xia Y
    Acc Chem Res; 2023 Apr; 56(7):900-909. PubMed ID: 36966410
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reversible Shape and Plasmon Tuning in Hollow AgAu Nanorods.
    Yazdi S; Daniel JR; Large N; Schatz GC; Boudreau D; Ringe E
    Nano Lett; 2016 Nov; 16(11):6939-6945. PubMed ID: 27704845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tweaking the Interplay among Galvanic Exchange, Oxidative Etching, and Seed-Mediated Deposition toward Architectural Control of Multimetallic Nanoelectrocatalysts.
    Li GG; Wang Z; Blom DA; Wang H
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23482-23494. PubMed ID: 31179681
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.
    Rao VK; Radhakrishnan TP
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12767-73. PubMed ID: 26035249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel deposition mechanism of Au on Ag nanostructures involving galvanic replacement and reduction reactions.
    Xu J; Yun Q; Zhang H; Guo Y; Ke S; Wang J; Zhu X; Kan C
    Chem Commun (Camb); 2021 Aug; 57(67):8332-8335. PubMed ID: 34323254
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys.
    Sun Y; Wiley B; Li ZY; Xia Y
    J Am Chem Soc; 2004 Aug; 126(30):9399-406. PubMed ID: 15281832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Galvanic Replacement Coupled to Seeded Growth as a Route for Shape-Controlled Synthesis of Plasmonic Nanorattles.
    Polavarapu L; Zanaga D; Altantzis T; Rodal-Cedeira S; Pastoriza-Santos I; Pérez-Juste J; Bals S; Liz-Marzán LM
    J Am Chem Soc; 2016 Sep; 138(36):11453-6. PubMed ID: 27556588
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Template-Assisted
    Ahmad N; Bon M; Passerone D; Erni R
    ACS Nano; 2019 Nov; 13(11):13333-13342. PubMed ID: 31647643
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ag dendrite-based Au/Ag bimetallic nanostructures with strongly enhanced catalytic activity.
    Huang J; Vongehr S; Tang S; Lu H; Shen J; Meng X
    Langmuir; 2009 Oct; 25(19):11890-6. PubMed ID: 19788231
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity.
    Yang Y; Liu J; Fu ZW; Qin D
    J Am Chem Soc; 2014 Jun; 136(23):8153-6. PubMed ID: 24863686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of hollow and nanoporous gold/platinum alloy nanoparticles and their electrocatalytic activity for formic acid oxidation.
    Lee D; Jang HY; Hong S; Park S
    J Colloid Interface Sci; 2012 Dec; 388(1):74-9. PubMed ID: 22964092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions.
    Chen D; Li C; Liu H; Ye F; Yang J
    Sci Rep; 2015 Jul; 5():11949. PubMed ID: 26144550
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alloyed Crystalline Au-Ag Hollow Nanostructures with High Chemical Stability and Catalytic Performance.
    Liu R; Guo J; Ma G; Jiang P; Zhang D; Li D; Chen L; Guo Y; Ge G
    ACS Appl Mater Interfaces; 2016 Jul; 8(26):16833-44. PubMed ID: 27268019
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metallic double shell hollow nanocages: the challenges of their synthetic techniques.
    Mahmoud MA; El-Sayed MA
    Langmuir; 2012 Mar; 28(9):4051-9. PubMed ID: 22239672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.