These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28054769)

  • 1. Efficient Heterostructures for Combined Interference and Plasmon Resonance Raman Amplification.
    Alvarez-Fraga L; Climent-Pascual E; Aguilar-Pujol M; Ramírez-Jiménez R; Jiménez-Villacorta F; Prieto C; de Andrés A
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):4119-4125. PubMed ID: 28054769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supported Ultra-Thin Alumina Membranes with Graphene as Efficient Interference Enhanced Raman Scattering Platforms for Sensing.
    Aguilar-Pujol M; Ramírez-Jiménez R; Xifre-Perez E; Cortijo-Campos S; Bartolomé J; Marsal LF; de Andrés A
    Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32349274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic-enhanced Raman scattering of graphene on growth substrates and its application in SERS.
    Zhao Y; Chen G; Du Y; Xu J; Wu S; Qu Y; Zhu Y
    Nanoscale; 2014 Nov; 6(22):13754-60. PubMed ID: 25285780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman and Fluorescence Enhancement Approaches in Graphene-Based Platforms for Optical Sensing and Imaging.
    Cortijo-Campos S; Ramírez-Jiménez R; de Andrés A
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33808013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced Raman scattering of single- and few-layer graphene by the deposition of gold nanoparticles.
    Lee J; Shim S; Kim B; Shin HS
    Chemistry; 2011 Feb; 17(8):2381-7. PubMed ID: 21264961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene/Ag nanoholes composites for quantitative surface-enhanced Raman scattering.
    Jie Z; Zenghe Y; Tiancheng G; Yunfei L; Dapeng W; Yong Z
    Opt Express; 2018 Aug; 26(17):22432-22439. PubMed ID: 30130937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of surface- and interference-enhanced Raman scattering by CuS nanocrystals on nanopatterned Au structures.
    Milekhin AG; Yeryukov NA; Sveshnikova LL; Duda TA; Rodyakina EE; Gridchin VA; Sheremet ES; Zahn DR
    Beilstein J Nanotechnol; 2015; 6():749-54. PubMed ID: 25977845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic-layer-deposited silver and dielectric nanostructures for plasmonic enhancement of Raman scattering from nanoscale ultrathin films.
    Ko CT; Yang PS; Han YY; Wang WC; Huang JJ; Lee YH; Tsai YJ; Shieh J; Chen MJ
    Nanotechnology; 2015 Jul; 26(26):265702. PubMed ID: 26057412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Raman scattering on two-dimensional palladium diselenide.
    Lei Z; Zhang X; Zhao Y; Wei A; Tao L; Yang Y; Zheng Z; Tao L; Yu P; Li J
    Nanoscale; 2022 Mar; 14(11):4181-4187. PubMed ID: 35234226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical interference effects in the design of substrates for surface-enhanced Raman spectroscopy.
    Shoute LC; Bergren AJ; Mahmoud AM; Harris KD; McCreery RL
    Appl Spectrosc; 2009 Feb; 63(2):133-40. PubMed ID: 19215642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanoworms: Optical properties and simultaneous SERS and fluorescence enhancement.
    Khan HI; Khan GA; Mehmood S; Khan AD; Ahmed W
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117111. PubMed ID: 31141771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-Ag Hybrids on Laser-Textured Si Surface for SERS Detection.
    Zhang C; Lin K; Huang Y; Zhang J
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28640180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Ethanethiolate Spacer on Morphology and Optical Responses of Ag Nanoparticle Array-Single Layer Graphene Hybrid Systems.
    Sutrová V; Šloufová I; Melníková Z; Kalbáč M; Pavlova E; Vlčková B
    Langmuir; 2017 Dec; 33(50):14414-14424. PubMed ID: 29172530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. R6G on graphene: high Raman detection sensitivity, yet decreased Raman cross-section.
    Thrall ES; Crowther AC; Yu Z; Brus LE
    Nano Lett; 2012 Mar; 12(3):1571-7. PubMed ID: 22335788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defective Graphene/Plasmonic Nanoparticle Hybrids for Surface-Enhanced Raman Scattering Sensors.
    Biroju RK; Marepally BC; Malik P; Dhara S; Gengan S; Maity D; Narayanan TN; Giri PK
    ACS Omega; 2023 Jan; 8(4):4344-4356. PubMed ID: 36743051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon-exciton coupling for nanophotonic sensing on chip.
    Dong J; Cao Y; Han Q; Wang Y; Qi M; Zhang W; Qiao L; Qi J; Gao W
    Opt Express; 2020 Jul; 28(14):20817-20829. PubMed ID: 32680134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-Enhanced Raman Scattering Based on Controllable-Layer Graphene Shells Directly Synthesized on Cu Nanoparticles for Molecular Detection.
    Qiu H; Huo Y; Li Z; Zhang C; Chen P; Jiang S; Xu S; Ma Y; Wang S; Li H
    Chemphyschem; 2015 Oct; 16(14):2953-60. PubMed ID: 26266687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of surface enhanced Raman scattering on the plasmonic template periodicity.
    Mandal P; Ramakrishna SA
    Opt Lett; 2011 Sep; 36(18):3705-7. PubMed ID: 21931439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid Metal-Dielectric-Metal Sandwiches for SERS Applications.
    Tatmyshevskiy MK; Yakubovsky DI; Kapitanova OO; Solovey VR; Vyshnevyy AA; Ermolaev GA; Klishin YA; Mironov MS; Voronov AA; Arsenin AV; Volkov VS; Novikov SM
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering.
    Huh S; Park J; Kim YS; Kim KS; Hong BH; Nam JM
    ACS Nano; 2011 Dec; 5(12):9799-806. PubMed ID: 22070659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.