These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 28054770)

  • 1. Icephobic Surfaces Induced by Interfacial Nonfrozen Water.
    Chen D; Gelenter MD; Hong M; Cohen RE; McKinley GH
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):4202-4214. PubMed ID: 28054770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced Ice Adhesion Using Amphiphilic Poly(Ionic Liquid)-Based Surfaces.
    Mossayebi Z; Jafari VF; Gurr PA; Simons R; Qiao GG
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):7454-7465. PubMed ID: 36708328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Icephobic Properties on Surfaces with a Hydrophilic Lubricating Liquid.
    Ozbay S; Yuceel C; Erbil HY
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):22067-77. PubMed ID: 26375386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing Icephobic Coatings: Exploring the Potential of Dopamine-Modified Epoxy Resin Inspired by Mussel Catechol Groups.
    Koochaki MS; Momen G; Lavoie S; Jafari R
    Biomimetics (Basel); 2024 Jun; 9(6):. PubMed ID: 38921229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable and durable polymeric icephobic and hydrate-phobic coatings.
    Sojoudi H; Arabnejad H; Raiyan A; Shirazi SA; McKinley GH; Gleason KK
    Soft Matter; 2018 May; 14(18):3443-3454. PubMed ID: 29547674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing durable icephobic surfaces.
    Golovin K; Kobaku SP; Lee DH; DiLoreto ET; Mabry JM; Tuteja A
    Sci Adv; 2016 Mar; 2(3):e1501496. PubMed ID: 26998520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crack-Initiated Durable Low-Adhesion Trilayer Icephobic Surfaces with Microcone-Array Anchored Porous Sponges and Polydimethylsiloxane Cover.
    Chen C; Fan P; Zhu D; Tian Z; Zhao H; Wang L; Peng R; Zhong M
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):6025-6034. PubMed ID: 36688663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic Inhibition of Clathrate Hydrate by Copolymers Based on
    Laroui A; Kelland MA; Wang D; Xu S; Xu Y; Lu P; Dong J
    Langmuir; 2022 Feb; 38(4):1522-1532. PubMed ID: 35067060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clarifying the Correlation of Ice Adhesion Strength with Water Wettability and Surface Characteristics.
    Wu X; Shen Y; Zheng S; Hu ZT; Chen Z
    Langmuir; 2020 Oct; 36(41):12190-12201. PubMed ID: 32988203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the Mechanical Durability of Icephobic Surfaces by Introducing Autonomous Self-Healing Function.
    Zhuo Y; Håkonsen V; He Z; Xiao S; He J; Zhang Z
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11972-11978. PubMed ID: 29547258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Icephobic surfaces: Definition and figures of merit.
    Irajizad P; Nazifi S; Ghasemi H
    Adv Colloid Interface Sci; 2019 Jul; 269():203-218. PubMed ID: 31096074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A predictive framework for the design and fabrication of icephobic polymers.
    Golovin K; Tuteja A
    Sci Adv; 2017 Sep; 3(9):e1701617. PubMed ID: 28948227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room Temperature Characteristics of Polymer-Based Low Ice Adhesion Surfaces.
    He Z; Vågenes ET; Delabahan C; He J; Zhang Z
    Sci Rep; 2017 Feb; 7():42181. PubMed ID: 28169370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metallic skeleton promoted two-phase durable icephobic layers.
    Wang J; Wu M; Liu J; Xu F; Hussain T; Scotchford C; Hou X
    J Colloid Interface Sci; 2021 Apr; 587():47-55. PubMed ID: 33360910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ice adhesion of PDMS surfaces with balanced elastic and water-repellent properties.
    Ibáñez-Ibáñez PF; Montes Ruiz-Cabello FJ; Cabrerizo-Vílchez MA; Rodríguez-Valverde MA
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):792-799. PubMed ID: 34689111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of sustaining liquid water within rough icephobic surfaces to achieve ultra-low ice adhesion.
    Zhao TY; Jones PR; Patankar NA
    Sci Rep; 2019 Jan; 9(1):258. PubMed ID: 30670738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase change surfaces with porous metallic structures for long-term anti/de-icing application.
    Yang D; Bao R; Clare AT; Choi KS; Hou X
    J Colloid Interface Sci; 2024 Apr; 660():136-146. PubMed ID: 38241862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships between water wettability and ice adhesion.
    Meuler AJ; Smith JD; Varanasi KK; Mabry JM; McKinley GH; Cohen RE
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3100-10. PubMed ID: 20949900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption and aqueous lubricating properties of charged and neutral amphiphilic diblock copolymers at a compliant, hydrophobic interface.
    Røn T; Javakhishvili I; Jankova K; Hvilsted S; Lee S
    Langmuir; 2013 Jun; 29(25):7782-92. PubMed ID: 23725290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.