BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 28054978)

  • 21. Blood substitutes: why haven't we been more successful?
    Alayash AI
    Trends Biotechnol; 2014 Apr; 32(4):177-85. PubMed ID: 24630491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms of Toxicity and Modulation of Hemoglobin-based Oxygen Carriers.
    Alayash AI
    Shock; 2019 Oct; 52(1S Suppl 1):41-49. PubMed ID: 29112106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent developments in hemoglobin-based oxygen carriers--an update on clinical trials.
    Carmichael FJ
    Transfus Apher Sci; 2001 Feb; 24(1):17-21. PubMed ID: 11515606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Processing of ferulic acid modified hemoglobin.
    Guo S; Wang P; Chen C; Meng Z; Qi D; Wang X
    Artif Cells Nanomed Biotechnol; 2016 Jun; 44(4):1075-9. PubMed ID: 26838267
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxidative stress in sickle cell disease; more than a DAMP squib.
    van Beers EJ; van Wijk R
    Clin Hemorheol Microcirc; 2018; 68(2-3):239-250. PubMed ID: 29614635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Civilian uses of hemoglobin-based oxygen carriers.
    Greenburg AG; Kim HW
    Artif Organs; 2004 Sep; 28(9):795-9. PubMed ID: 15320942
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Does lead interfere with hemoglobin-based oxygen carrier (HBOC) function? A pilot study of lead concentrations in three approved or tested HBOCs and oxyhemoglobin dissociation with HBOCs and/or bovine blood with varying lead concentrations.
    Khan AK; Jahr JS; Nesargi S; Rothenberg SJ; Tang Z; Cheung A; Gunther RA; Kost GJ; Driessen B
    Anesth Analg; 2003 Jun; 96(6):1813-1820. PubMed ID: 12761018
    [TBL] [Abstract][Full Text] [Related]  

  • 28. First-generation blood substitutes: what have we learned? Biochemical and physiological perspectives.
    Alayash AI; D'Agnillo F; Buehler PW
    Expert Opin Biol Ther; 2007 May; 7(5):665-75. PubMed ID: 17477804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Established and experimental treatments for sickle cell disease.
    De Franceschi L; Corrocher R
    Haematologica; 2004 Mar; 89(3):348-56. PubMed ID: 15020275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of preserved red blood cells on the severe adverse events observed in patients infused with hemoglobin based oxygen carriers.
    Valeri CR; Ragno G
    Artif Cells Blood Substit Immobil Biotechnol; 2008; 36(1):3-18. PubMed ID: 18293157
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A review of blood substitutes: examining the history, clinical trial results, and ethics of hemoglobin-based oxygen carriers.
    Chen JY; Scerbo M; Kramer G
    Clinics (Sao Paulo); 2009; 64(8):803-13. PubMed ID: 19690667
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Review of hemoglobin-vesicles as artificial oxygen carriers.
    Sakai H; Sou K; Horinouchi H; Kobayashi K; Tsuchida E
    Artif Organs; 2009 Feb; 33(2):139-45. PubMed ID: 19178458
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction of recombinant octameric hemoglobin with endothelial cells.
    Gaucher C; Domingues-Hamdi É; Prin-Mathieu C; Menu P; Baudin-Creuza V
    C R Biol; 2015 Feb; 338(2):95-102. PubMed ID: 25543885
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human sickle cell blood modulates endothelial heme oxygenase activity: effects on vascular adhesion and reactivity.
    Bains SK; Foresti R; Howard J; Atwal S; Green CJ; Motterlini R
    Arterioscler Thromb Vasc Biol; 2010 Feb; 30(2):305-12. PubMed ID: 19965783
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pharmacokinetics and mechanisms of plasma removal of hemoglobin-based oxygen carriers.
    Estep TN
    Artif Cells Nanomed Biotechnol; 2015 Jun; 43(3):203-15. PubMed ID: 26024447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulating hemoglobin allostery for treatment of sickle cell disease: current progress and intellectual property.
    Pagare PP; Rastegar A; Abdulmalik O; Omar AM; Zhang Y; Fleischman A; Safo MK
    Expert Opin Ther Pat; 2022 Feb; 32(2):115-130. PubMed ID: 34657559
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel hemoglobin particles--promising new-generation hemoglobin-based oxygen carriers.
    Bäumler H; Xiong Y; Liu ZZ; Patzak A; Georgieva R
    Artif Organs; 2014 Aug; 38(8):708-14. PubMed ID: 24962099
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Haptoglobin attenuates hemoglobin-induced heme oxygenase-1 in renal proximal tubule cells and kidneys of a mouse model of sickle cell disease.
    Chintagari NR; Nguyen J; Belcher JD; Vercellotti GM; Alayash AI
    Blood Cells Mol Dis; 2015 Mar; 54(3):302-6. PubMed ID: 25582460
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical Evaluation of MP4CO: A Phase 1b Escalating-Dose, Safety and Tolerability Study in Stable Adult Patients with Sickle Cell Disease.
    Keipert PE;
    Adv Exp Med Biol; 2016; 923():23-29. PubMed ID: 27526120
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low concentrations of nitric oxide increase oxygen affinity of sickle erythrocytes in vitro and in vivo.
    Head CA; Brugnara C; Martinez-Ruiz R; Kacmarek RM; Bridges KR; Kuter D; Bloch KD; Zapol WM
    J Clin Invest; 1997 Sep; 100(5):1193-8. PubMed ID: 9276736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.