These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 28055036)
21. Wireless multilateral devices for optogenetic studies of individual and social behaviors. Yang Y; Wu M; Vázquez-Guardado A; Wegener AJ; Grajales-Reyes JG; Deng Y; Wang T; Avila R; Moreno JA; Minkowicz S; Dumrongprechachan V; Lee J; Zhang S; Legaria AA; Ma Y; Mehta S; Franklin D; Hartman L; Bai W; Han M; Zhao H; Lu W; Yu Y; Sheng X; Banks A; Yu X; Donaldson ZR; Gereau RW; Good CH; Xie Z; Huang Y; Kozorovitskiy Y; Rogers JA Nat Neurosci; 2021 Jul; 24(7):1035-1045. PubMed ID: 33972800 [TBL] [Abstract][Full Text] [Related]
22. Hybrid intracerebral probe with integrated bare LED chips for optogenetic studies. Ayub S; Gentet LJ; Fiáth R; Schwaerzle M; Borel M; David F; Barthó P; Ulbert I; Paul O; Ruther P Biomed Microdevices; 2017 Sep; 19(3):49. PubMed ID: 28560702 [TBL] [Abstract][Full Text] [Related]
23. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering. Canales A; Park S; Kilias A; Anikeeva P Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583 [TBL] [Abstract][Full Text] [Related]
24. Remote optogenetic control of the enteric nervous system and brain-gut axis in freely-behaving mice enabled by a wireless, battery-free optoelectronic device. Efimov AI; Hibberd TJ; Wang Y; Wu M; Zhang K; Ting K; Madhvapathy S; Lee MK; Kim J; Kang J; Riahi M; Zhang H; Travis L; Govier EJ; Yang L; Kelly N; Huang Y; Vázquez-Guardado A; Spencer NJ; Rogers JA Biosens Bioelectron; 2024 Aug; 258():116298. PubMed ID: 38701537 [TBL] [Abstract][Full Text] [Related]
25. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Zhang Y; Mickle AD; Gutruf P; McIlvried LA; Guo H; Wu Y; Golden JP; Xue Y; Grajales-Reyes JG; Wang X; Krishnan S; Xie Y; Peng D; Su CJ; Zhang F; Reeder JT; Vogt SK; Huang Y; Rogers JA; Gereau RW Sci Adv; 2019 Jul; 5(7):eaaw5296. PubMed ID: 31281895 [TBL] [Abstract][Full Text] [Related]
26. A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals. Ouyang W; Lu W; Zhang Y; Liu Y; Kim JU; Shen H; Wu Y; Luan H; Kilner K; Lee SP; Lu Y; Yang Y; Wang J; Yu Y; Wegener AJ; Moreno JA; Xie Z; Wu Y; Won SM; Kwon K; Wu C; Bai W; Guo H; Liu TL; Bai H; Monti G; Zhu J; Madhvapathy SR; Trueb J; Stanslaski M; Higbee-Dempsey EM; Stepien I; Ghoreishi-Haack N; Haney CR; Kim TI; Huang Y; Ghaffari R; Banks AR; Jhou TC; Good CH; Rogers JA Nat Biomed Eng; 2023 Oct; 7(10):1252-1269. PubMed ID: 37106153 [TBL] [Abstract][Full Text] [Related]
27. In vivo optogenetic stimulation of the rodent central nervous system. Sidor MM; Davidson TJ; Tye KM; Warden MR; Diesseroth K; McClung CA J Vis Exp; 2015 Jan; (95):51483. PubMed ID: 25651158 [TBL] [Abstract][Full Text] [Related]
29. Microfluidic neural probes: in vivo tools for advancing neuroscience. Sim JY; Haney MP; Park SI; McCall JG; Jeong JW Lab Chip; 2017 Apr; 17(8):1406-1435. PubMed ID: 28349140 [TBL] [Abstract][Full Text] [Related]
30. A wireless, smartphone controlled, battery powered, head mounted light delivery system for optogenetic stimulation. Kouhani MHM; Luo R; Madi F; Weber AJ; Li W Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3366-3369. PubMed ID: 30441109 [TBL] [Abstract][Full Text] [Related]
31. A polymer-based neural microimplant for optogenetic applications: design and first in vivo study. Rubehn B; Wolff SB; Tovote P; Lüthi A; Stieglitz T Lab Chip; 2013 Feb; 13(4):579-88. PubMed ID: 23306183 [TBL] [Abstract][Full Text] [Related]
33. Targeted in vivo genetic manipulation of the mouse or rat brain by in utero electroporation with a triple-electrode probe. Szczurkowska J; Cwetsch AW; dal Maschio M; Ghezzi D; Ratto GM; Cancedda L Nat Protoc; 2016 Mar; 11(3):399-412. PubMed ID: 26844428 [TBL] [Abstract][Full Text] [Related]
34. Wireless battery free fully implantable multimodal recording and neuromodulation tools for songbirds. Ausra J; Munger SJ; Azami A; Burton A; Peralta R; Miller JE; Gutruf P Nat Commun; 2021 Mar; 12(1):1968. PubMed ID: 33785751 [TBL] [Abstract][Full Text] [Related]
35. Rapidly-customizable, scalable 3D-printed wireless optogenetic probes for versatile applications in neuroscience. Lee J; Parker KE; Kawakami C; Kim JR; Qazi R; Yea J; Zhang S; Kim CY; Bilbily J; Xiao J; Jang KI; McCall JG; Jeong JW Adv Funct Mater; 2020 Nov; 30(46):. PubMed ID: 33708031 [TBL] [Abstract][Full Text] [Related]
36. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Montgomery KL; Yeh AJ; Ho JS; Tsao V; Mohan Iyer S; Grosenick L; Ferenczi EA; Tanabe Y; Deisseroth K; Delp SL; Poon AS Nat Methods; 2015 Oct; 12(10):969-74. PubMed ID: 26280330 [TBL] [Abstract][Full Text] [Related]
37. A Wireless Electro-Optic Headstage With a 0.13- μm CMOS Custom Integrated DWT Neural Signal Decoder for Closed-Loop Optogenetics. Gagnon-Turcotte G; Keramidis I; Ethier C; De Koninck Y; Gosselin B IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):1036-1051. PubMed ID: 31352352 [TBL] [Abstract][Full Text] [Related]
38. Organ-specific, multimodal, wireless optoelectronics for high-throughput phenotyping of peripheral neural pathways. Kim WS; Hong S; Gamero M; Jeevakumar V; Smithhart CM; Price TJ; Palmiter RD; Campos C; Park SI Nat Commun; 2021 Jan; 12(1):157. PubMed ID: 33420038 [TBL] [Abstract][Full Text] [Related]
39. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Park SI; Brenner DS; Shin G; Morgan CD; Copits BA; Chung HU; Pullen MY; Noh KN; Davidson S; Oh SJ; Yoon J; Jang KI; Samineni VK; Norman M; Grajales-Reyes JG; Vogt SK; Sundaram SS; Wilson KM; Ha JS; Xu R; Pan T; Kim TI; Huang Y; Montana MC; Golden JP; Bruchas MR; Gereau RW; Rogers JA Nat Biotechnol; 2015 Dec; 33(12):1280-1286. PubMed ID: 26551059 [TBL] [Abstract][Full Text] [Related]
40. Flexible and fully implantable upconversion device for wireless optogenetic stimulation of the spinal cord in behaving animals. Wang Y; Xie K; Yue H; Chen X; Luo X; Liao Q; Liu M; Wang F; Shi P Nanoscale; 2020 Jan; 12(4):2406-2414. PubMed ID: 31782467 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]