BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 28055116)

  • 1. Standardization, Calibration, and Control in Flow Cytometry.
    Wang L; Hoffman RA
    Curr Protoc Cytom; 2017 Jan; 79():1.3.1-1.3.27. PubMed ID: 28055116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Standardization, calibration, and control in flow cytometry.
    Hoffman RA
    Curr Protoc Cytom; 2005 May; Chapter 1():Unit 1.3. PubMed ID: 18770811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Instrument-dependent fluorochrome sensitivity in flow cytometric analyses.
    Chance JT; Larsen SA; Pope V; Measel JW; Cox DL
    Cytometry; 1995 Sep; 22(3):232-42. PubMed ID: 8556955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basics of standardization and calibration in cytometry--a review.
    Mittag A; Tárnok A
    J Biophotonics; 2009 Sep; 2(8-9):470-81. PubMed ID: 19504519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic variability of fluorescence calibrators impacts the assignment of MESF or ERF values to nanoparticles and extracellular vesicles by flow cytometry.
    Lozano-Andrés E; Van Den Broeck T; Wang L; Mehrpouyan M; Tian Y; Yan X; Arkesteijn GJA; Wauben MHM
    Nanomedicine; 2024 Feb; 56():102720. PubMed ID: 38007067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of interlaboratory variability in flow cytometric immunophenotyping by standardization of instrument set-up and calibration, and standard list mode data analysis.
    Gratama JW; Kraan J; Adriaansen H; Hooibrink B; Levering W; Reinders P; Van den Beemd MW; Van der Holt B; Bolhuis RL
    Cytometry; 1997 Feb; 30(1):10-22. PubMed ID: 9056737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Fluorescence Measurements with Multicolor Flow Cytometry.
    Wang L; Gaigalas AK; Wood J
    Methods Mol Biol; 2018; 1678():93-110. PubMed ID: 29071677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence and Light Scatter Calibration Allow Comparisons of Small Particle Data in Standard Units across Different Flow Cytometry Platforms and Detector Settings.
    Welsh JA; Jones JC; Tang VA
    Cytometry A; 2020 Jun; 97(6):592-601. PubMed ID: 32476280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolution of dimly fluorescent particles: a practical measure of fluorescence sensitivity.
    Chase ES; Hoffman RA
    Cytometry; 1998 Oct; 33(2):267-79. PubMed ID: 9773890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Standardization of microparticle enumeration across different flow cytometry platforms: results of a multicenter collaborative workshop.
    Cointe S; Judicone C; Robert S; Mooberry MJ; Poncelet P; Wauben M; Nieuwland R; Key NS; Dignat-George F; Lacroix R
    J Thromb Haemost; 2017 Jan; 15(1):187-193. PubMed ID: 27662257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of EGFP expression on Molt-4 T cells using calibration standards.
    Gerena-López Y; Nolan J; Wang L; Gaigalas A; Schwartz A; Fernández-Repollet E
    Cytometry A; 2004 Jul; 60(1):21-8. PubMed ID: 15229854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FACSCanto II and LSRFortessa flow cytometer instruments can be synchronized utilizing single-fluorochrome-conjugated surface-dyed beads for standardized immunophenotyping.
    Cornel AM; van der Burght CAJ; Nierkens S; van Velzen JF
    J Clin Lab Anal; 2020 Sep; 34(9):e23361. PubMed ID: 32430992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Standardized counting of circulating platelet microparticles using currently available flow cytometers and scatter-based triggering: Forward or side scatter?
    Poncelet P; Robert S; Bouriche T; Bez J; Lacroix R; Dignat-George F
    Cytometry A; 2016 Feb; 89(2):148-58. PubMed ID: 25963580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible planar microfluidic chip employing a light emitting diode and a PIN-photodiode for portable flow cytometers.
    Kettlitz SW; Valouch S; Sittel W; Lemmer U
    Lab Chip; 2012 Jan; 12(1):197-203. PubMed ID: 22086498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NIST/ISAC standardization study: variability in assignment of intensity values to fluorescence standard beads and in cross calibration of standard beads to hard dyed beads.
    Hoffman RA; Wang L; Bigos M; Nolan JP
    Cytometry A; 2012 Sep; 81(9):785-96. PubMed ID: 22915363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of calibration standards for antigen quantitation with flow cytometry in chronic lymphocytic leukemia.
    Rossmann ED; Lenkei R; Lundin J; Mellstedt H; Osterborg A
    Cytometry B Clin Cytom; 2007 Nov; 72(6):450-7. PubMed ID: 17565749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single particle high resolution spectral analysis flow cytometry.
    Goddard G; Martin JC; Naivar M; Goodwin PM; Graves SW; Habbersett R; Nolan JP; Jett JH
    Cytometry A; 2006 Aug; 69(8):842-51. PubMed ID: 16969803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification and properties of 64 multiplexed microsphere sets.
    Kettman JR; Davies T; Chandler D; Oliver KG; Fulton RJ
    Cytometry; 1998 Oct; 33(2):234-43. PubMed ID: 9773885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of background, signal-to-noise, and dynamic range of a flow cytometer: A novel practical method for instrument characterization and standardization.
    Giesecke C; Feher K; von Volkmann K; Kirsch J; Radbruch A; Kaiser T
    Cytometry A; 2017 Nov; 91(11):1104-1114. PubMed ID: 28960720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calibration and standardization of extracellular vesicle measurements by flow cytometry for translational prostate cancer research.
    Kim Y; van der Pol E; Arafa A; Thapa I; J Britton C; Kosti J; Song S; Joshi VB; M Erickson R; Ali H; Lucien F
    Nanoscale; 2022 Jul; 14(27):9781-9795. PubMed ID: 35770741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.