These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28055882)

  • 1. User Evaluation of a Dynamic Arm Orthosis for People With Neuromuscular Disorders.
    Gunn M; Shank TM; Eppes M; Hossain J; Rahman T
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1277-1283. PubMed ID: 28055882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative measures with WREX usage.
    Shank TM; Wee J; Ty J; Rahman T
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1375-1380. PubMed ID: 28814012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and testing of a functional arm orthosis in patients with neuromuscular diseases.
    Rahman T; Sample W; Seliktar R; Scavina MT; Clark AL; Moran K; Alexander MA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):244-51. PubMed ID: 17601194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wilmington robotic exoskeleton: a novel device to maintain arm improvement in muscular disease.
    Haumont T; Rahman T; Sample W; M King M; Church C; Henley J; Jayakumar S
    J Pediatr Orthop; 2011; 31(5):e44-9. PubMed ID: 21654447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive exoskeletons for assisting limb movement.
    Rahman T; Sample W; Jayakumar S; King MM; Wee JY; Seliktar R; Alexander M; Scavina M; Clark A
    J Rehabil Res Dev; 2006; 43(5):583-90. PubMed ID: 17123200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A body-powered functional upper limb orthosis.
    Rahman T; Sample W; Seliktar R; Alexander M; Scavina M
    J Rehabil Res Dev; 2000; 37(6):675-80. PubMed ID: 11321003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis.
    Housman SJ; Scott KM; Reinkensmeyer DJ
    Neurorehabil Neural Repair; 2009 Jun; 23(5):505-14. PubMed ID: 19237734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment.
    Sanchez RJ; Liu J; Rao S; Shah P; Smith R; Rahman T; Cramer SC; Bobrow JE; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):378-89. PubMed ID: 17009498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of a gravity-compensating orthosis on reaching after stroke: evaluation of the Therapy Assistant WREX.
    Iwamuro BT; Cruz EG; Connelly LL; Fischer HC; Kamper DG
    Arch Phys Med Rehabil; 2008 Nov; 89(11):2121-8. PubMed ID: 18996241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Series elastic actuator control of a powered exoskeleton.
    Ragonesi D; Agrawal S; Sample W; Rahman T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3515-8. PubMed ID: 22255098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring functional arm movement for home-based therapy after stroke.
    Sanchez R; Reinkensmeyer D; Shah P; Liu J; Rao S; Smith R; Cramer S; Rahman T; Bobrow J
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4787-90. PubMed ID: 17271381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and analysis of knee-ankle-foot orthosis design requirements based on a feedback survey of orthosis users in India.
    Bapat GM; Sujatha S
    Disabil Rehabil Assist Technol; 2019 Jan; 14(1):82-90. PubMed ID: 29265890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of arm trajectories of everyday tasks for the development of an upper-limb orthosis.
    Ramanathan R; Eberhardt SP; Rahman T; Sample W; Seliktar R; Alexander M
    IEEE Trans Rehabil Eng; 2000 Mar; 8(1):60-70. PubMed ID: 10779109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New generation emerging technologies for neurorehabilitation and motor assistance.
    Frisoli A; Solazzi M; Loconsole C; Barsotti M
    Acta Myol; 2016 Dec; 35(3):141-144. PubMed ID: 28484314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. User-centred assistive SystEm for arm Functions in neUromuscuLar subjects (USEFUL): a randomized controlled study.
    Longatelli V; Antonietti A; Biffi E; Diella E; D'Angelo MG; Rossini M; Molteni F; Bocciolone M; Pedrocchi A; Gandolla M
    J Neuroeng Rehabil; 2021 Jan; 18(1):4. PubMed ID: 33407580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying anti-gravity torques for the design of a powered exoskeleton.
    Ragonesi D; Agrawal SK; Sample W; Rahman T
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):283-8. PubMed ID: 23096118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility and Effectiveness of a Novel Exoskeleton for an Infant With Arm Movement Impairments.
    Babik I; Kokkoni E; Cunha AB; Galloway JC; Rahman T; Lobo MA
    Pediatr Phys Ther; 2016; 28(3):338-46. PubMed ID: 27341584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of assistive devices for arm balancing.
    Dunning AG; Herder JL
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650485. PubMed ID: 24187302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical Outcomes with the Intrepid Dynamic Exoskeletal Orthosis: A Retrospective Analysis.
    Ikeda AJ; Fergason JR; Wilken JM
    Mil Med; 2019 Dec; 184(11-12):601-605. PubMed ID: 30796439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exoskeleton for gait rehabilitation of children: Conceptual design.
    Cornejo JL; Santana JF; Salinas SA
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():452-454. PubMed ID: 28813861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.