These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
464 related articles for article (PubMed ID: 28056037)
1. Accurate Promoter and Enhancer Identification in 127 ENCODE and Roadmap Epigenomics Cell Types and Tissues by GenoSTAN. Zacher B; Michel M; Schwalb B; Cramer P; Tresch A; Gagneur J PLoS One; 2017; 12(1):e0169249. PubMed ID: 28056037 [TBL] [Abstract][Full Text] [Related]
2. CD8 He B; Xing S; Chen C; Gao P; Teng L; Shan Q; Gullicksrud JA; Martin MD; Yu S; Harty JT; Badovinac VP; Tan K; Xue HH Immunity; 2016 Dec; 45(6):1341-1354. PubMed ID: 27986453 [TBL] [Abstract][Full Text] [Related]
3. Towards genome-wide prediction and characterization of enhancers in plants. Marand AP; Zhang T; Zhu B; Jiang J Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):131-139. PubMed ID: 27321818 [TBL] [Abstract][Full Text] [Related]
4. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Heintzman ND; Stuart RK; Hon G; Fu Y; Ching CW; Hawkins RD; Barrera LO; Van Calcar S; Qu C; Ching KA; Wang W; Weng Z; Green RD; Crawford GE; Ren B Nat Genet; 2007 Mar; 39(3):311-8. PubMed ID: 17277777 [TBL] [Abstract][Full Text] [Related]
6. Epigenome overlap measure (EPOM) for comparing tissue/cell types based on chromatin states. Li WV; Razaee ZS; Li JJ BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):10. PubMed ID: 26817822 [TBL] [Abstract][Full Text] [Related]
7. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome. Hon G; Ren B; Wang W PLoS Comput Biol; 2008 Oct; 4(10):e1000201. PubMed ID: 18927605 [TBL] [Abstract][Full Text] [Related]
8. Discriminative identification of transcriptional responses of promoters and enhancers after stimulus. Kleftogiannis D; Kalnis P; Arner E; Bajic VB Nucleic Acids Res; 2017 Feb; 45(4):e25. PubMed ID: 27789687 [TBL] [Abstract][Full Text] [Related]
9. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions. Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187 [TBL] [Abstract][Full Text] [Related]
10. IMPACT: Genomic Annotation of Cell-State-Specific Regulatory Elements Inferred from the Epigenome of Bound Transcription Factors. Amariuta T; Luo Y; Gazal S; Davenport EE; van de Geijn B; Ishigaki K; Westra HJ; Teslovich N; Okada Y; Yamamoto K; ; Price AL; Raychaudhuri S Am J Hum Genet; 2019 May; 104(5):879-895. PubMed ID: 31006511 [TBL] [Abstract][Full Text] [Related]
11. Improved regulatory element prediction based on tissue-specific local epigenomic signatures. He Y; Gorkin DU; Dickel DE; Nery JR; Castanon RG; Lee AY; Shen Y; Visel A; Pennacchio LA; Ren B; Ecker JR Proc Natl Acad Sci U S A; 2017 Feb; 114(9):E1633-E1640. PubMed ID: 28193886 [TBL] [Abstract][Full Text] [Related]
12. Integrative construction of regulatory region networks in 127 human reference epigenomes by matrix factorization. Liu D; Davila-Velderrain J; Zhang Z; Kellis M Nucleic Acids Res; 2019 Aug; 47(14):7235-7246. PubMed ID: 31265076 [TBL] [Abstract][Full Text] [Related]
13. FOCS: a novel method for analyzing enhancer and gene activity patterns infers an extensive enhancer-promoter map. Hait TA; Amar D; Shamir R; Elkon R Genome Biol; 2018 May; 19(1):56. PubMed ID: 29716618 [TBL] [Abstract][Full Text] [Related]
14. Epigenomics: Roadmap for regulation. Romanoski CE; Glass CK; Stunnenberg HG; Wilson L; Almouzni G Nature; 2015 Feb; 518(7539):314-6. PubMed ID: 25693562 [No Abstract] [Full Text] [Related]
15. Predicting enhancers in mammalian genomes using supervised hidden Markov models. Zehnder T; Benner P; Vingron M BMC Bioinformatics; 2019 Mar; 20(1):157. PubMed ID: 30917778 [TBL] [Abstract][Full Text] [Related]
16. Detection and characterization of regulatory elements using probabilistic conditional random field and hidden Markov models. Wang H; Zhou X Chin J Cancer; 2013 Apr; 32(4):186-94. PubMed ID: 23237214 [TBL] [Abstract][Full Text] [Related]
17. Peak-valley-peak pattern of histone modifications delineates active regulatory elements and their directionality. Pundhir S; Bagger FO; Lauridsen FB; Rapin N; Porse BT Nucleic Acids Res; 2016 May; 44(9):4037-51. PubMed ID: 27095194 [TBL] [Abstract][Full Text] [Related]
18. The cis-Regulatory Atlas of the Mouse Immune System. Yoshida H; Lareau CA; Ramirez RN; Rose SA; Maier B; Wroblewska A; Desland F; Chudnovskiy A; Mortha A; Dominguez C; Tellier J; Kim E; Dwyer D; Shinton S; Nabekura T; Qi Y; Yu B; Robinette M; Kim KW; Wagers A; Rhoads A; Nutt SL; Brown BD; Mostafavi S; Buenrostro JD; Benoist C; Cell; 2019 Feb; 176(4):897-912.e20. PubMed ID: 30686579 [TBL] [Abstract][Full Text] [Related]
19. DELTA: A Distal Enhancer Locating Tool Based on AdaBoost Algorithm and Shape Features of Chromatin Modifications. Lu Y; Qu W; Shan G; Zhang C PLoS One; 2015; 10(6):e0130622. PubMed ID: 26091399 [TBL] [Abstract][Full Text] [Related]
20. The role of chromatin dynamics in immune cell development. Winter DR; Amit I Immunol Rev; 2014 Sep; 261(1):9-22. PubMed ID: 25123274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]