These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
464 related articles for article (PubMed ID: 28056037)
21. RFECS: a random-forest based algorithm for enhancer identification from chromatin state. Rajagopal N; Xie W; Li Y; Wagner U; Wang W; Stamatoyannopoulos J; Ernst J; Kellis M; Ren B PLoS Comput Biol; 2013; 9(3):e1002968. PubMed ID: 23526891 [TBL] [Abstract][Full Text] [Related]
22. Locus-specific editing of histone modifications at endogenous enhancers. Mendenhall EM; Williamson KE; Reyon D; Zou JY; Ram O; Joung JK; Bernstein BE Nat Biotechnol; 2013 Dec; 31(12):1133-6. PubMed ID: 24013198 [TBL] [Abstract][Full Text] [Related]
24. Prediction of regulatory elements in mammalian genomes using chromatin signatures. Won KJ; Chepelev I; Ren B; Wang W BMC Bioinformatics; 2008 Dec; 9():547. PubMed ID: 19094206 [TBL] [Abstract][Full Text] [Related]
25. Chromatin interaction networks revealed unique connectivity patterns of broad H3K4me3 domains and super enhancers in 3D chromatin. Thibodeau A; Márquez EJ; Shin DG; Vera-Licona P; Ucar D Sci Rep; 2017 Oct; 7(1):14466. PubMed ID: 29089515 [TBL] [Abstract][Full Text] [Related]
26. Genome-wide characterization of mammalian promoters with distal enhancer functions. Dao LTM; Galindo-Albarrán AO; Castro-Mondragon JA; Andrieu-Soler C; Medina-Rivera A; Souaid C; Charbonnier G; Griffon A; Vanhille L; Stephen T; Alomairi J; Martin D; Torres M; Fernandez N; Soler E; van Helden J; Puthier D; Spicuglia S Nat Genet; 2017 Jul; 49(7):1073-1081. PubMed ID: 28581502 [TBL] [Abstract][Full Text] [Related]
27. Eukaryotic enhancers: common features, regulation, and participation in diseases. Erokhin M; Vassetzky Y; Georgiev P; Chetverina D Cell Mol Life Sci; 2015 Jun; 72(12):2361-75. PubMed ID: 25715743 [TBL] [Abstract][Full Text] [Related]
28. Computational schemes for the prediction and annotation of enhancers from epigenomic assays. Whitaker JW; Nguyen TT; Zhu Y; Wildberg A; Wang W Methods; 2015 Jan; 72():86-94. PubMed ID: 25461775 [TBL] [Abstract][Full Text] [Related]
29. Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers. Gotea V; Visel A; Westlund JM; Nobrega MA; Pennacchio LA; Ovcharenko I Genome Res; 2010 May; 20(5):565-77. PubMed ID: 20363979 [TBL] [Abstract][Full Text] [Related]
30. Determinants of promoter and enhancer transcription directionality in metazoans. Ibrahim MM; Karabacak A; Glahs A; Kolundzic E; Hirsekorn A; Carda A; Tursun B; Zinzen RP; Lacadie SA; Ohler U Nat Commun; 2018 Oct; 9(1):4472. PubMed ID: 30367057 [TBL] [Abstract][Full Text] [Related]
32. Nanoscale chromatin profiling of gastric adenocarcinoma reveals cancer-associated cryptic promoters and somatically acquired regulatory elements. Muratani M; Deng N; Ooi WF; Lin SJ; Xing M; Xu C; Qamra A; Tay ST; Malik S; Wu J; Lee MH; Zhang S; Tan LL; Chua H; Wong WK; Ong HS; Ooi LL; Chow PK; Chan WH; Soo KC; Goh LK; Rozen S; Teh BT; Yu Q; Ng HH; Tan P Nat Commun; 2014 Jul; 5():4361. PubMed ID: 25008978 [TBL] [Abstract][Full Text] [Related]
33. Demystifying the secret mission of enhancers: linking distal regulatory elements to target genes. Yao L; Berman BP; Farnham PJ Crit Rev Biochem Mol Biol; 2015; 50(6):550-73. PubMed ID: 26446758 [TBL] [Abstract][Full Text] [Related]
34. Modifying chromatin to shut off enhancers. Rusk N Nat Methods; 2013 Nov; 10(11):1052-3. PubMed ID: 24344380 [No Abstract] [Full Text] [Related]
35. Integrative analysis of reference epigenomes in 20 rice varieties. Zhao L; Xie L; Zhang Q; Ouyang W; Deng L; Guan P; Ma M; Li Y; Zhang Y; Xiao Q; Zhang J; Li H; Wang S; Man J; Cao Z; Zhang Q; Zhang Q; Li G; Li X Nat Commun; 2020 May; 11(1):2658. PubMed ID: 32461553 [TBL] [Abstract][Full Text] [Related]
36. Different enhancer classes in Drosophila bind distinct architectural proteins and mediate unique chromatin interactions and 3D architecture. Cubeñas-Potts C; Rowley MJ; Lyu X; Li G; Lei EP; Corces VG Nucleic Acids Res; 2017 Feb; 45(4):1714-1730. PubMed ID: 27899590 [TBL] [Abstract][Full Text] [Related]
38. TAD boundary and strength prediction by integrating sequence and epigenetic profile information. Wang Y; Liu Y; Xu Q; Xu Y; Cao K; Deng N; Wang R; Zhang X; Zheng R; Li G; Fang Y Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33866359 [TBL] [Abstract][Full Text] [Related]
39. Enhancer prediction with histone modification marks using a hybrid neural network model. Lim A; Lim S; Kim S Methods; 2019 Aug; 166():48-56. PubMed ID: 30905748 [TBL] [Abstract][Full Text] [Related]
40. Toward predictive R-loop computational biology: genome-scale prediction of R-loops reveals their association with complex promoter structures, G-quadruplexes and transcriptionally active enhancers. Kuznetsov VA; Bondarenko V; Wongsurawat T; Yenamandra SP; Jenjaroenpun P Nucleic Acids Res; 2018 Sep; 46(15):7566-7585. PubMed ID: 29945198 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]