These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28056127)

  • 1. Use of Robotic Manipulators to Study Diarthrodial Joint Function.
    Debski RE; Yamakawa S; Musahl V; Fujie H
    J Biomech Eng; 2017 Feb; 139(2):. PubMed ID: 28056127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of robotic technology for diathrodial joint research.
    Woo SL; Debski RE; Wong EK; Yagi M; Tarinelli D
    J Sci Med Sport; 1999 Dec; 2(4):283-97. PubMed ID: 10710007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of robotics technology to study human joint kinematics: a new methodology.
    Fujie H; Mabuchi K; Woo SL; Livesay GA; Arai S; Tsukamoto Y
    J Biomech Eng; 1993 Aug; 115(3):211-7. PubMed ID: 8231133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of finger motion range with compliant anthropomorphic joint design.
    Çulha U; Iida F
    Bioinspir Biomim; 2016 Feb; 11(2):026001. PubMed ID: 26891473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control methods and the performance of the robotic testing system for human musculoskeletal joints.
    Tian L
    Ann Biomed Eng; 2004 Jun; 32(6):889-98. PubMed ID: 15255219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel robotic system for joint biomechanical tests: application to the human knee joint.
    Fujie H; Sekito T; Orita A
    J Biomech Eng; 2004 Feb; 126(1):54-61. PubMed ID: 15171129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forces and moments in six-DOF at the human knee joint: mathematical description for control.
    Fujie H; Livesay GA; Fujita M; Woo SL
    J Biomech; 1996 Dec; 29(12):1577-85. PubMed ID: 8945656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intelligent self-tuning of PID control for the robotic testing system for human musculoskeletal joints test.
    Tian L
    Ann Biomed Eng; 2004 Jun; 32(6):899-909. PubMed ID: 15255220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ force distribution in the glenohumeral joint capsule during anterior-posterior loading.
    Debski RE; Wong EK; Woo SL; Sakane M; Fu FH; Warner JJ
    J Orthop Res; 1999 Sep; 17(5):769-76. PubMed ID: 10569490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting propulsive forces using distributed sensors in a compliant, high DOF, robotic fin.
    Kahn JC; Peretz DJ; Tangorra JL
    Bioinspir Biomim; 2015 May; 10(3):036009. PubMed ID: 25985056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel methodology to reproduce previously recorded six-degree of freedom kinematics on the same diarthrodial joint.
    Moore SM; Thomas M; Woo SL; Gabriel MT; Kilger R; Debski RE
    J Biomech; 2006; 39(10):1914-23. PubMed ID: 16005464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the effect of joint constraints on the in situ force distribution in the anterior cruciate ligament.
    Livesay GA; Rudy TW; Woo SL; Runco TJ; Sakane M; Li G; Fu FH
    J Orthop Res; 1997 Mar; 15(2):278-84. PubMed ID: 9167632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A robotic cadaveric flatfoot analysis of stance phase.
    Jackson LT; Aubin PM; Cowley MS; Sangeorzan BJ; Ledoux WR
    J Biomech Eng; 2011 May; 133(5):051005. PubMed ID: 21599096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of pose repeatability and specimen repositioning of a robotic joint testing platform.
    El Daou H; Lord B; Amis A; Rodriguez Y Baena F
    Med Eng Phys; 2017 Sep; 47():210-213. PubMed ID: 28651855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.
    Liacouras PC; Wayne JS
    J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method to study precision grip control in viscoelastic force fields using a robotic gripper.
    Lambercy O; Metzger JC; Santello M; Gassert R
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):39-48. PubMed ID: 25014953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust Control of a Cable-Driven Soft Exoskeleton Joint for Intrinsic Human-Robot Interaction.
    Jarrett C; McDaid AJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):976-986. PubMed ID: 28278475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying anti-gravity torques for the design of a powered exoskeleton.
    Ragonesi D; Agrawal SK; Sample W; Rahman T
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):283-8. PubMed ID: 23096118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Methodology for the Simulation of Athletic Tasks on Cadaveric Knee Joints with Respect to In Vivo Kinematics.
    Bates NA; Nesbitt RJ; Shearn JT; Myer GD; Hewett TE
    Ann Biomed Eng; 2015 Oct; 43(10):2456-66. PubMed ID: 25869454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges in using compliant ligaments for position estimation within robotic joints.
    Russell F; Gao L; Ellison P; Vaidyanathan R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1471-1476. PubMed ID: 28814027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.