These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 28056144)

  • 1. In vivo three-dimensional imaging of human corneal nerves using Fourier-domain optical coherence tomography.
    Shin JG; Hwang HS; Eom TJ; Lee BH
    J Biomed Opt; 2017 Jan; 22(1):10501. PubMed ID: 28056144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
    Wojtkowski M; Srinivasan V; Fujimoto JG; Ko T; Schuman JS; Kowalczyk A; Duker JS
    Ophthalmology; 2005 Oct; 112(10):1734-46. PubMed ID: 16140383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of fourier-domain and time-domain optical coherence tomography for assessment of corneal thickness and intersession repeatability.
    Prakash G; Agarwal A; Jacob S; Kumar DA; Agarwal A; Banerjee R
    Am J Ophthalmol; 2009 Aug; 148(2):282-290.e2. PubMed ID: 19442961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of central corneal thickness measurements using optical low-coherence reflectometry, Fourier domain optical coherence tomography, and Scheimpflug camera.
    Gonul S; Koktekir BE; Bakbak B; Gedik S
    Arq Bras Oftalmol; 2014; 77(6):345-50. PubMed ID: 25627178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical coherence tomography for in situ monitoring of laser corneal ablation.
    Bagayev SN; Gelikonov VM; Gelikonov GV; Kargapoltsev ES; Kuranov RV; Razhev AM; Turchin IV; Zhupikov AA
    J Biomed Opt; 2002 Oct; 7(4):633-42. PubMed ID: 12421132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of central corneal thickness by high-resolution Scheimpflug imaging, Fourier-domain optical coherence tomography and ultrasound pachymetry.
    Chen S; Huang J; Wen D; Chen W; Huang D; Wang Q
    Acta Ophthalmol; 2012 Aug; 90(5):449-55. PubMed ID: 20560892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fourier-domain optical coherence tomography imaging in keratoconus: a corneal structural classification.
    Sandali O; El Sanharawi M; Temstet C; Hamiche T; Galan A; Ghouali W; Goemaere I; Basli E; Borderie V; Laroche L
    Ophthalmology; 2013 Dec; 120(12):2403-2412. PubMed ID: 23932599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional optical coherence tomography of granular corneal dystrophy.
    Miura M; Mori H; Watanabe Y; Usui M; Kawana K; Oshika T; Yatagai T; Yasuno Y
    Cornea; 2007 Apr; 26(3):373-4. PubMed ID: 17413970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimode fiber enables control of spatial coherence in Fourier-domain full-field optical coherence tomography for in vivo corneal imaging.
    Auksorius E; Borycki D; Wojtkowski M
    Opt Lett; 2021 Mar; 46(6):1413-1416. PubMed ID: 33720200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corneal Power Measurement Obtained by Fourier-Domain Optical Coherence Tomography: Repeatability, Reproducibility, and Comparison With Scheimpflug and Automated Keratometry Measurements.
    Wang Q; Hua Y; Savini G; Chen H; Bao F; Lin S; Lu W; Huang J
    Cornea; 2015 Oct; 34(10):1266-71. PubMed ID: 26226469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT.
    Hillmann D; Bonin T; Lührs C; Franke G; Hagen-Eggert M; Koch P; Hüttmann G
    Opt Express; 2012 Mar; 20(6):6761-76. PubMed ID: 22418560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Higher-order regression three-dimensional motion-compensation method for real-time optical coherence tomography volumetric imaging of the cornea.
    Zuo R; Irsch K; Kang JU
    J Biomed Opt; 2022 Jun; 27(6):. PubMed ID: 35751143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Features of age-related macular degeneration assessed with three-dimensional Fourier-domain optical coherence tomography.
    Menke MN; Dabov S; Sturm V
    Br J Ophthalmol; 2008 Nov; 92(11):1492-7. PubMed ID: 18703554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The diagnostic significance of Fourier-domain optical coherence tomography in Sjögren syndrome, aqueous tear deficiency and lipid tear deficiency patients.
    Qiu X; Gong L; Lu Y; Jin H; Robitaille M
    Acta Ophthalmol; 2012 Aug; 90(5):e359-66. PubMed ID: 22568661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human graft cornea and laser incisions imaging with micrometer scale resolution full-field optical coherence tomography.
    Latour G; Georges G; Lamoine LS; Deumié C; Conrath J; Hoffart L
    J Biomed Opt; 2010; 15(5):056006. PubMed ID: 21054100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-beam spectral-domain optical coherence tomography for retinal imaging.
    Suehira N; Ooto S; Hangai M; Matsumoto K; Tomatsu N; Yuasa T; Yamada K; Yoshimura N
    J Biomed Opt; 2012 Oct; 17(10):106001. PubMed ID: 23224000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo evaluation of the cornea and conjunctiva of the normal laboratory beagle using time- and Fourier-domain optical coherence tomography and ultrasound pachymetry.
    Strom AR; Cortés DE; Rasmussen CA; Thomasy SM; McIntyre K; Lee SF; Kass PH; Mannis MJ; Murphy CJ
    Vet Ophthalmol; 2016 Jan; 19(1):50-6. PubMed ID: 25676065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inpainting Saturation Artifact in Anterior Segment Optical Coherence Tomography.
    Li J; Zhang H; Wang X; Wang H; Hao J; Bai G
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anterior segment imaging: Fourier-domain optical coherence tomography versus time-domain optical coherence tomography.
    Wylegała E; Teper S; Nowińska AK; Milka M; Dobrowolski D
    J Cataract Refract Surg; 2009 Aug; 35(8):1410-4. PubMed ID: 19631129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct corneal elevation measurements using multiple delay en face optical coherence tomography.
    Plesea L; Podoleanu AG
    J Biomed Opt; 2008; 13(5):054054. PubMed ID: 19021434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.