These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28056356)

  • 1. Removal of vanadium from industrial wastewater using iron sorbents in batch and continuous flow pilot systems.
    Leiviskä T; Khalid MK; Sarpola A; Tanskanen J
    J Environ Manage; 2017 Apr; 190():231-242. PubMed ID: 28056356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vanadium removal from mining ditch water using commercial iron products and ferric groundwater treatment residual-based materials.
    Zhang R; Lu J; Dopson M; Leiviskä T
    Chemosphere; 2022 Jan; 286(Pt 2):131817. PubMed ID: 34426130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of metals from industrial wastewater and urban runoff by mineral and bio-based sorbents.
    Gogoi H; Leiviskä T; Heiderscheidt E; Postila H; Tanskanen J
    J Environ Manage; 2018 Mar; 209():316-327. PubMed ID: 29306841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of metals from wastewaters by mineral and biomass-based sorbents applied in continuous-flow continuous stirred tank reactors followed by sedimentation.
    Heiderscheidt E; Postila H; Leiviskä T
    Sci Total Environ; 2020 Jan; 700():135079. PubMed ID: 31706088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vanadium(V) removal from aqueous solution and real wastewater using quaternized pine sawdust.
    Leiviskä T; Keränen A; Vainionpää N; Al Amir J; Hormi O; Tanskanen J
    Water Sci Technol; 2015; 72(3):437-42. PubMed ID: 26204076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pilot-scale field study for vanadium removal from mining-influenced waters using an iron-based sorbent.
    Zhang R; Walder I; Leiviskä T
    J Hazard Mater; 2021 Aug; 416():125961. PubMed ID: 34492875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal and recovery of vanadium from alkaline steel slag leachates with anion exchange resins.
    Gomes HI; Jones A; Rogerson M; Greenway GM; Lisbona DF; Burke IT; Mayes WM
    J Environ Manage; 2017 Feb; 187():384-392. PubMed ID: 27836554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential for use of industrial waste materials as filter media for removal of Al, Mo, As, V and Ga from alkaline drainage in constructed wetlands--adsorption studies.
    Hua T; Haynes RJ; Zhou YF; Boullemant A; Chandrawana I
    Water Res; 2015 Mar; 71():32-41. PubMed ID: 25589434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of highly effective absorbents with waste quenching blast furnace slag to remove Methyl Orange from aqueous solution.
    Gao H; Song Z; Zhang W; Yang X; Wang X; Wang D
    J Environ Sci (China); 2017 Mar; 53():68-77. PubMed ID: 28372762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predominant Mechanisms in the Treatment of Wastewater Due to Interaction of Benzaldehyde and Iron Slag Byproduct.
    Faisal AAH; Alquzweeni SS; Naji LA; Naushad M
    Int J Environ Res Public Health; 2019 Dec; 17(1):. PubMed ID: 31905605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphate removal by mineral-based sorbents used in filters for small-scale wastewater treatment.
    Gustafsson JP; Renman A; Renman G; Poll K
    Water Res; 2008 Jan; 42(1-2):189-97. PubMed ID: 17659317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight into the removal of vanadium ions from model and real wastewaters using surface grafted zirconia-based adsorbents: Batch experiments, equilibrium and mechanism study.
    Weidner E; Wójcik G; Kołodyńska D; Jesionowski T; Ciesielczyk F
    J Environ Manage; 2022 Dec; 324():116306. PubMed ID: 36166864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of vanadium(III) and molybdenum(V) from wastewater using Posidonia oceanica (Tracheophyta) biomass.
    Pennesi C; Totti C; Beolchini F
    PLoS One; 2013; 8(10):e76870. PubMed ID: 24204692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vanadium(V) Removal from Aqueous Solutions and Real Wastewaters onto Anion Exchangers and Lewatit AF5.
    Wołowicz A; Hubicki Z
    Molecules; 2022 Aug; 27(17):. PubMed ID: 36080204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash.
    Nguyen TC; Loganathan P; Nguyen TV; Kandasamy J; Naidu R; Vigneswaran S
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20430-20438. PubMed ID: 28707235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trypsin-Immobilized Silica: A Novel Adsorbent for V(IV) and V(V) Removal from Water.
    Yayayürük AE; Shahwan T; Şanlı-Mohamed G; Eroğlu AE
    Water Environ Res; 2018 Dec; 90(12):2056-2065. PubMed ID: 30538014
    [No Abstract]   [Full Text] [Related]  

  • 17. Removal of Ammonia from the Municipal Waste Treatment Effluents using Natural Minerals.
    Seruga P; Krzywonos M; Pyżanowska J; Urbanowska A; Pawlak-Kruczek H; Niedźwiecki Ł
    Molecules; 2019 Oct; 24(20):. PubMed ID: 31600902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of phosphorus-sorbing materials to remove phosphate from greenhouse wastewater.
    Dunets CS; Zheng Y; Dixon M
    Environ Technol; 2015; 36(13-16):1759-70. PubMed ID: 25608464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lead and vanadium removal from a real industrial wastewater by gravitational settling/sedimentation and sorption onto Pinus sylvestris sawdust.
    Kaczala F; Marques M; Hogland W
    Bioresour Technol; 2009 Jan; 100(1):235-43. PubMed ID: 18664408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From waste to waste: iron blast furnace slag for heavy metal ions removal from aqueous system.
    Abdelbasir SM; Khalek MAA
    Environ Sci Pollut Res Int; 2022 Aug; 29(38):57964-57979. PubMed ID: 35355191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.