These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
440 related articles for article (PubMed ID: 28056401)
1. Toxicity evaluation of magnetic hyperthermia induced by remote actuation of magnetic nanoparticles in 3D micrometastasic tumor tissue analogs for triple negative breast cancer. Stocke NA; Sethi P; Jyoti A; Chan R; Arnold SM; Hilt JZ; Upreti M Biomaterials; 2017 Mar; 120():115-125. PubMed ID: 28056401 [TBL] [Abstract][Full Text] [Related]
2. The Therapeutic Effects of MUC1-C shRNA@Fe Li Z; Guo T; Zhao S; Lin M Int J Nanomedicine; 2023; 18():5651-5670. PubMed ID: 37822991 [TBL] [Abstract][Full Text] [Related]
3. In vitro anti-cancer efficacy of multi-functionalized magnetite nanoparticles combining alternating magnetic hyperthermia in glioblastoma cancer cells. Minaei SE; Khoei S; Khoee S; Vafashoar F; Mahabadi VP Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():575-587. PubMed ID: 31029351 [TBL] [Abstract][Full Text] [Related]
4. Mild magnetic nanoparticle hyperthermia enhances the susceptibility of Alumutairi L; Yu B; Filka M; Nayfach J; Kim MH Int J Hyperthermia; 2020; 37(1):66-75. PubMed ID: 31964196 [No Abstract] [Full Text] [Related]
5. Formulation and characterization of inhalable magnetic nanocomposite microparticles (MnMs) for targeted pulmonary delivery via spray drying. Stocke NA; Meenach SA; Arnold SM; Mansour HM; Hilt JZ Int J Pharm; 2015 Feb; 479(2):320-8. PubMed ID: 25542988 [TBL] [Abstract][Full Text] [Related]
6. Magnetic nanoparticles-based drug and gene delivery systems for the treatment of pulmonary diseases. El-Sherbiny IM; Elbaz NM; Sedki M; Elgammal A; Yacoub MH Nanomedicine (Lond); 2017 Feb; 12(4):387-402. PubMed ID: 28078950 [TBL] [Abstract][Full Text] [Related]
7. Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model. Rego GNA; Mamani JB; Souza TKF; Nucci MP; Silva HRD; Gamarra LF Einstein (Sao Paulo); 2019 Aug; 17(4):eAO4786. PubMed ID: 31390427 [TBL] [Abstract][Full Text] [Related]
8. Non-Temperature Induced Effects of Magnetized Iron Oxide Nanoparticles in Alternating Magnetic Field in Cancer Cells. Hapuarachchige S; Kato Y; Ngen EJ; Smith B; Delannoy M; Artemov D PLoS One; 2016; 11(5):e0156294. PubMed ID: 27244470 [TBL] [Abstract][Full Text] [Related]
9. Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Sadhukha T; Wiedmann TS; Panyam J Biomaterials; 2013 Jul; 34(21):5163-71. PubMed ID: 23591395 [TBL] [Abstract][Full Text] [Related]
10. Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal Cancer Therapy. T S A; Lu YJ; Chen JP Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32707876 [TBL] [Abstract][Full Text] [Related]
11. Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia. Soetaert F; Dupré L; Ivkov R; Crevecoeur G Biomed Tech (Berl); 2015 Oct; 60(5):491-504. PubMed ID: 26351900 [TBL] [Abstract][Full Text] [Related]
12. 3D in silico study of magnetic fluid hyperthermia of breast tumor using Fe Suleman M; Riaz S J Therm Biol; 2020 Jul; 91():102635. PubMed ID: 32716877 [TBL] [Abstract][Full Text] [Related]
13. Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells. Nowicka AM; Ruzycka-Ayoush M; Kasprzak A; Kowalczyk A; Bamburowicz-Klimkowska M; Sikorska M; Sobczak K; Donten M; Ruszczynska A; Nowakowska J; Grudzinski IP J Mater Chem B; 2023 May; 11(18):4028-4041. PubMed ID: 36960952 [TBL] [Abstract][Full Text] [Related]
14. Extracellular and intracellular intermittent magnetic-fluid hyperthermia treatment of SK-Hep1 hepatocellular carcinoma cells based on magnetic nanoparticles coated with polystyrene sulfonic acid. Chen BW; Chiu GW; He YC; Huang CY; Huang HT; Sung SY; Hsieh CL; Chang WC; Hsu MS; Wei ZH; Yao DJ PLoS One; 2021; 16(2):e0245286. PubMed ID: 33544751 [TBL] [Abstract][Full Text] [Related]
15. Design and Assessment of a Novel Biconical Human-Sized Alternating Magnetic Field Coil for MNP Hyperthermia Treatment of Deep-Seated Cancer. Shoshiashvili L; Shamatava I; Kakulia D; Shubitidze F Cancers (Basel); 2023 Mar; 15(6):. PubMed ID: 36980560 [TBL] [Abstract][Full Text] [Related]
17. Magnetic thermoablation stimuli alter BCL2 and FGF-R1 but not HSP70 expression profiles in BT474 breast tumors. Stapf M; Pömpner N; Kettering M; Hilger I Int J Nanomedicine; 2015; 10():1931-9. PubMed ID: 25792827 [TBL] [Abstract][Full Text] [Related]
18. Triple Therapy of HER2 Zolata H; Afarideh H; Davani FA Cancer Biother Radiopharm; 2016 Nov; 31(9):324-329. PubMed ID: 27831759 [TBL] [Abstract][Full Text] [Related]
19. Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia. Ding Q; Liu D; Guo D; Yang F; Pang X; Che R; Zhou N; Xie J; Sun J; Huang Z; Gu N Biomaterials; 2017 Apr; 124():35-46. PubMed ID: 28187393 [TBL] [Abstract][Full Text] [Related]
20. Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia. Yoo D; Jeong H; Noh SH; Lee JH; Cheon J Angew Chem Int Ed Engl; 2013 Dec; 52(49):13047-51. PubMed ID: 24281889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]