BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28056510)

  • 1. A Green Aerobic Oxidative Synthesis of Pyrrolo[1,2-a]quinoxalines from Simple Alcohols without Metals and Additives.
    Li J; Zhang J; Yang H; Gao Z; Jiang G
    J Org Chem; 2017 Jan; 82(1):765-769. PubMed ID: 28056510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-pot synthesis of pyrrolo[1,2-a]quinoxaline derivatives via iron-promoted aryl nitro reduction and aerobic oxidation of alcohols.
    Pereira Mde F; Thiéry V
    Org Lett; 2012 Sep; 14(18):4754-7. PubMed ID: 22971137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron-Catalyzed Intramolecular C(sp(2))-N Cyclization of 1-(N-Arylpyrrol-2-yl)ethanone O-Acetyl Oximes toward Pyrrolo[1,2-a]quinoxaline Derivatives.
    Zhang Z; Li J; Zhang G; Ma N; Liu Q; Liu T
    J Org Chem; 2015 Jul; 80(13):6875-84. PubMed ID: 26057737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-Pot Synthesis of Pyrrolo[1,2-a]quinoxaline Derivatives via a Copper-Catalyzed Aerobic Oxidative Domino Reaction.
    Liu H; Duan T; Zhang Z; Xie C; Ma C
    Org Lett; 2015 Jun; 17(12):2932-5. PubMed ID: 26052923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of highly functionalized polycyclic quinoxaline derivatives using visible-light photoredox catalysis.
    He Z; Bae M; Wu J; Jamison TF
    Angew Chem Int Ed Engl; 2014 Dec; 53(52):14451-5. PubMed ID: 25347967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Synthesis of Pyrrolo[1,2-α]quinoxalines
    Chun S; Ahn J; Putta RR; Lee SB; Oh DC; Hong S
    J Org Chem; 2020 Dec; 85(23):15314-15324. PubMed ID: 33119283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unprecedented synthesis of 1,2,3-triazolo-cinnolinone via Sonogashira coupling and intramolecular cyclization.
    Kumar A; Tiwari DK; Sridhar B; Likhar PR
    Org Biomol Chem; 2018 Jul; 16(26):4840-4848. PubMed ID: 29926881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembly of Diversely Substituted Quinolines via Aerobic Oxidative Aromatization from Simple Alcohols and Anilines.
    Li J; Zhang J; Yang H; Jiang G
    J Org Chem; 2017 Mar; 82(6):3284-3290. PubMed ID: 28225276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. α-Hydroxy acid as an aldehyde surrogate: metal-free synthesis of pyrrolo[1,2-
    Viji M; Vishwanath M; Sim J; Park Y; Jung C; Lee S; Lee H; Lee K; Jung JK
    RSC Adv; 2020 Oct; 10(61):37202-37208. PubMed ID: 35521290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-Free Aerobic Oxidation of Nitro-Substituted Alkylarenes to Carboxylic Acids or Benzyl Alcohols Promoted by NaOH.
    Fang K; Li G; She Y
    J Org Chem; 2018 Aug; 83(15):8092-8103. PubMed ID: 29905478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unexpectedly Simple Synthesis of Benzazoles by tBuONa-Catalyzed Direct Aerobic Oxidative Cyclocondensation of o-Thio/Hydroxy/Aminoanilines with Alcohols under Air.
    Shi X; Guo J; Liu J; Ye M; Xu Q
    Chemistry; 2015 Jul; 21(28):9988-93. PubMed ID: 26052680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrosynthesis of 2-Substituted Benzoxazoles via Intramolecular Shono-Type Oxidative Coupling of Glycine Derivatives.
    Liu L; Xu Z; Liu T; Xu C; Zhang W; Hua X; Ling F; Zhong W
    J Org Chem; 2022 Sep; 87(17):11379-11386. PubMed ID: 35951541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A direct entry to polycyclic quinoxaline derivatives
    Samanta SK; Sarkar R; Sengupta U; Das S; Ganguly D; Hasija A; Chopra D; Bera MK
    Org Biomol Chem; 2022 Jun; 20(22):4650-4658. PubMed ID: 35612282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molybdenum-Catalyzed Synthesis of Nitrogenated Polyheterocycles from Nitroarenes and Glycols with Reuse of Waste Reduction Byproduct.
    Rubio-Presa R; Pedrosa MAR; Fernández-Rodríguez MA; Arnáiz FJ; Sanz R
    Org Lett; 2017 Oct; 19(19):5470-5473. PubMed ID: 28952319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of 4-Aryl Pyrrolo[1,2-α]quinoxalines
    Ahn J; Lee SB; Song I; Chun S; Oh DC; Hong S
    J Org Chem; 2021 Jun; 86(11):7390-7402. PubMed ID: 34028267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New ferrocenic pyrrolo[1,2-a]quinoxaline derivatives: synthesis, and in vitro antimalarial activity.
    Guillon J; Moreau S; Mouray E; Sinou V; Forfar I; Fabre SB; Desplat V; Millet P; Parzy D; Jarry C; Grellier P
    Bioorg Med Chem; 2008 Oct; 16(20):9133-44. PubMed ID: 18819813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of α-amino acids for the transition-metal-free synthesis of pyrrolo[1,2-a]quinoxalines.
    Liu H; Zhou F; Luo W; Chen Y; Zhang C; Ma C
    Org Biomol Chem; 2017 Aug; 15(34):7157-7164. PubMed ID: 28805833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper catalyzed photoredox synthesis of α-keto esters, quinoxaline, and naphthoquinone: controlled oxidation of terminal alkynes to glyoxals.
    Das DK; Kumar Pampana VK; Hwang KC
    Chem Sci; 2018 Oct; 9(37):7318-7326. PubMed ID: 30294421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of densely substituted α,β,γ,δ-dienones via the Pd(II)-catalyzed allylation, H-migration, and aerobic oxidative δ-hydride elimination cascade.
    Yuan FQ; Han FS
    Org Lett; 2012 Mar; 14(5):1218-21. PubMed ID: 22320383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Pyrrolo[1,2-a]quinoxalines via gold(I)-mediated cascade reactions.
    Liu G; Zhou Y; Lin D; Wang J; Zhang L; Jiang H; Liu H
    ACS Comb Sci; 2011 May; 13(3):209-13. PubMed ID: 21488625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.