These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 28057331)

  • 1. Retention prediction of low molecular weight anions in ion chromatography based on quantitative structure-retention relationships applied to the linear solvent strength model.
    Park SH; Haddad PR; Talebi M; Tyteca E; Amos RI; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Feb; 1486():68-75. PubMed ID: 28057331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a chromatographic similarity index to establish localised quantitative structure-retention relationships for retention prediction. II Use of Tanimoto similarity index in ion chromatography.
    Park SH; Talebi M; Amos RIJ; Tyteca E; Haddad PR; Szucs R; Pohl CA; Dolan JW
    J Chromatogr A; 2017 Nov; 1523():173-182. PubMed ID: 28291517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a chromatographic similarity index to establish localised Quantitative Structure-Retention Relationships for retention prediction. III Combination of Tanimoto similarity index, logP, and retention factor ratio to identify optimal analyte training sets for ion chromatography.
    Park SH; Haddad PR; Amos RIJ; Talebi M; Szucs R; Pohl CA; Dolan JW
    J Chromatogr A; 2017 Oct; 1520():107-116. PubMed ID: 28916393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localised quantitative structure-retention relationship modelling for rapid method development in reversed-phase high performance liquid chromatography.
    Park SH; De Pra M; Haddad PR; Grosse S; Pohl CA; Steiner F
    J Chromatogr A; 2020 Jan; 1609():460508. PubMed ID: 31530383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced methodology for porting ion chromatography retention data.
    Park SH; Shellie RA; Dicinoski GW; Schuster G; Talebi M; Haddad PR; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2016 Mar; 1436():59-63. PubMed ID: 26860051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of retention in hydrophilic interaction liquid chromatography using solute molecular descriptors based on chemical structures.
    Taraji M; Haddad PR; Amos RI; Talebi M; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Feb; 1486():59-67. PubMed ID: 28049585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance comparison of nonlinear and linear regression algorithms coupled with different attribute selection methods for quantitative structure - retention relationships modelling in micellar liquid chromatography.
    Krmar J; Vukićević M; Kovačević A; Protić A; Zečević M; Otašević B
    J Chromatogr A; 2020 Jul; 1623():461146. PubMed ID: 32505269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of linear solvent strength model and quantitative structure-retention relationships as a comprehensive procedure of approximate prediction of retention in gradient liquid chromatography.
    Baczek T; Kaliszan R
    J Chromatogr A; 2002 Jul; 962(1-2):41-55. PubMed ID: 12198971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of theoretical and experimental models for characterizing solvent properties using reversed phase liquid chromatography.
    Liu T; Nicholls IA; Öberg T
    Anal Chim Acta; 2011 Sep; 702(1):37-44. PubMed ID: 21819857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative characteristics of HPLC columns based on quantitative structure-retention relationships (QSRR) and hydrophobic-subtraction model.
    Baczek T; Kaliszan R; Novotná K; Jandera P
    J Chromatogr A; 2005 May; 1075(1-2):109-15. PubMed ID: 15974124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSRR prediction of the chromatographic retention behavior of painkiller drugs.
    Ghasemi J; Saaidpour S
    J Chromatogr Sci; 2009 Feb; 47(2):156-63. PubMed ID: 19222924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-column prediction of gas-chromatographic retention of polychlorinated biphenyls by artificial neural networks.
    D'Archivio AA; Incani A; Ruggieri F
    J Chromatogr A; 2011 Dec; 1218(48):8679-90. PubMed ID: 22000780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive approaches to gradient retention based on analyte structural descriptors from calculation chemistry.
    Baczek T; Kaliszan R
    J Chromatogr A; 2003 Feb; 987(1-2):29-37. PubMed ID: 12613794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategy for reduced calibration sets to develop quantitative structure-retention relationships in high-performance liquid chromatography.
    Andries JP; Claessens HA; Heyden YV; Buydens LM
    Anal Chim Acta; 2009 Oct; 652(1-2):180-8. PubMed ID: 19786179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer of gas chromatographic retention data among poly(siloxane) columns by quantitative structure-retention relationships based on molecular descriptors of both solutes and stationary phases.
    Biancolillo A; D'Archivio AA
    J Chromatogr A; 2022 Jan; 1663():462758. PubMed ID: 34954535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative structure-retention relationships with model analytes as a means of an objective evaluation of chromatographic columns.
    Ahmed Al-Haj M; Kaliszan R; Buszewski B
    J Chromatogr Sci; 2001 Jan; 39(1):29-38. PubMed ID: 11206911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid Method Development in Hydrophilic Interaction Liquid Chromatography for Pharmaceutical Analysis Using a Combination of Quantitative Structure-Retention Relationships and Design of Experiments.
    Taraji M; Haddad PR; Amos RI; Talebi M; Szucs R; Dolan JW; Pohl CA
    Anal Chem; 2017 Feb; 89(3):1870-1878. PubMed ID: 28208251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention prediction in reversed phase high performance liquid chromatography using quantitative structure-retention relationships applied to the Hydrophobic Subtraction Model.
    Wen Y; Talebi M; Amos RIJ; Szucs R; Dolan JW; Pohl CA; Haddad PR
    J Chromatogr A; 2018 Mar; 1541():1-11. PubMed ID: 29454529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative structure-retention relationship of selected imidazoline derivatives on α1-acid glycoprotein column.
    Filipic S; Ruzic D; Vucicevic J; Nikolic K; Agbaba D
    J Pharm Biomed Anal; 2016 Aug; 127():101-11. PubMed ID: 26968888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling of UPLC behaviour of acylcarnitines by quantitative structure-retention relationships.
    D'Archivio AA; Maggi MA; Ruggieri F
    J Pharm Biomed Anal; 2014 Aug; 96():224-30. PubMed ID: 24780923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.