These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28057346)

  • 1. Pyrite oxidation in the presence of hematite and alumina: II. Effects on the cathodic and anodic half-cell reactions.
    Tabelin CB; Veerawattananun S; Ito M; Hiroyoshi N; Igarashi T
    Sci Total Environ; 2017 Mar; 581-582():126-135. PubMed ID: 28057346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrite oxidation in the presence of hematite and alumina: I. Batch leaching experiments and kinetic modeling calculations.
    Tabelin CB; Veerawattananun S; Ito M; Hiroyoshi N; Igarashi T
    Sci Total Environ; 2017 Feb; 580():687-698. PubMed ID: 27988184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acid mine drainage formation and arsenic mobility under strongly acidic conditions: Importance of soluble phases, iron oxyhydroxides/oxides and nature of oxidation layer on pyrite.
    Tabelin CB; Corpuz RD; Igarashi T; Villacorte-Tabelin M; Alorro RD; Yoo K; Raval S; Ito M; Hiroyoshi N
    J Hazard Mater; 2020 Nov; 399():122844. PubMed ID: 32534389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous suppression of acid mine drainage formation and arsenic release by Carrier-microencapsulation using aluminum-catecholate complexes.
    Park I; Tabelin CB; Seno K; Jeon S; Ito M; Hiroyoshi N
    Chemosphere; 2018 Aug; 205():414-425. PubMed ID: 29704849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppressive effects of ferric-catecholate complexes on pyrite oxidation.
    Li X; Hiroyoshi N; Tabelin CB; Naruwa K; Harada C; Ito M
    Chemosphere; 2019 Jan; 214():70-78. PubMed ID: 30257197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alumina inhibits pyrite oxidative dissolution by regulating solid film passivation layer and S, Fe, and Al speciation transformation.
    Liu G; Tang J; Li B; Chen C; Wang X
    Chemosphere; 2024 Mar; 352():141366. PubMed ID: 38311037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carrier-microencapsulation of arsenopyrite using Al-catecholate complex: nature of oxidation products, effects on anodic and cathodic reactions, and coating stability under simulated weathering conditions.
    Park I; Tabelin CB; Seno K; Jeon S; Inano H; Ito M; Hiroyoshi N
    Heliyon; 2020 Jan; 6(1):e03189. PubMed ID: 31956714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effects of Galvanic Interactions with Pyrite on the Generation of Acid and Metalliferous Drainage.
    Qian G; Fan R; Short MD; Schumann RC; Li J; St C Smart R; Gerson AR
    Environ Sci Technol; 2018 May; 52(9):5349-5357. PubMed ID: 29608053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence factors for the oxidation of pyrite by oxygen and birnessite in aqueous systems.
    Qiu G; Luo Y; Chen C; Lv Q; Tan W; Liu F; Liu C
    J Environ Sci (China); 2016 Jul; 45():164-76. PubMed ID: 27372130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current approaches for mitigating acid mine drainage.
    Sahoo PK; Kim K; Equeenuddin SM; Powell MA
    Rev Environ Contam Toxicol; 2013; 226():1-32. PubMed ID: 23625128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study of the surface energy and electronic structure of pyrite FeS2 (100) using a total-energy pseudopotential method, CASTEP.
    Qiu G; Xiao Q; Hu Y; Qin W; Wang D
    J Colloid Interface Sci; 2004 Feb; 270(1):127-32. PubMed ID: 14693144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silane-based coatings on the pyrite for remediation of acid mine drainage.
    Diao Z; Shi T; Wang S; Huang X; Zhang T; Tang Y; Zhang X; Qiu R
    Water Res; 2013 Sep; 47(13):4391-402. PubMed ID: 23764590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron Transfer between Electrically Conductive Minerals and Quinones.
    Taran O
    Front Chem; 2017; 5():49. PubMed ID: 28752088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abnormal Cathodic Photocurrent Generated on an n-Type FeOOH Nanorod-Array Photoelectrode.
    Chen H; Lyu M; Liu G; Wang L
    Chemistry; 2016 Mar; 22(14):4802-8. PubMed ID: 26879339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of alumina on photocatalytic activity of iron oxides for bisphenol A degradation.
    Li FB; Li XZ; Liu CS; Liu TX
    J Hazard Mater; 2007 Oct; 149(1):199-207. PubMed ID: 17475402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the Influence of Calcium Fluoride on Pyrite Electrochemical Dissolution and Mine Drainage pH.
    Wang L; Liu Q; Zheng K; Li H
    J Environ Qual; 2016 Jul; 45(4):1344-50. PubMed ID: 27380083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical behavior of pyrite in sulfuric acid in presence of amino acids belonging to the amino acid sequence of rusticyanin.
    Maluckov BS; Mitrić MN
    Bioelectrochemistry; 2018 Oct; 123():112-118. PubMed ID: 29747129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of Oxygen and Water Molecules with Pyrite Surface: A New Insight.
    Li Y; Chen J; Chen Y; Zhao C; Zhang Y; Ke B
    Langmuir; 2018 Feb; 34(5):1941-1952. PubMed ID: 29293351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced pyrite passivation by carrier-microencapsulation using Fe-catechol and Ti-catechol complexes.
    Li X; Park I; Tabelin CB; Naruwa K; Goda T; Harada C; Jeon S; Ito M; Hiroyoshi N
    J Hazard Mater; 2021 Aug; 416():126089. PubMed ID: 34492902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controls on Fe(II)-activated trace element release from goethite and hematite.
    Frierdich AJ; Catalano JG
    Environ Sci Technol; 2012 Feb; 46(3):1519-26. PubMed ID: 22185654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.