BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28057409)

  • 21. Effects of CO₂ Concentration and pH on Mixotrophic Growth of Nannochloropsis oculata.
    Razzak SA; Ilyas M; Ali SA; Hossain MM
    Appl Biochem Biotechnol; 2015 Jul; 176(5):1290-302. PubMed ID: 25926014
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anaerobic digestate as substrate for microalgae culture: the role of ammonium concentration on the microalgae productivity.
    Uggetti E; Sialve B; Latrille E; Steyer JP
    Bioresour Technol; 2014; 152():437-43. PubMed ID: 24316486
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomass and lipid production from Nannochloropsis oculata growth in raceway ponds operated in sequential batch mode under greenhouse conditions.
    Millán-Oropeza A; Fernández-Linares L
    Environ Sci Pollut Res Int; 2017 Nov; 24(33):25618-25626. PubMed ID: 27272702
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potential of Monoraphidium minutum for carbon sequestration and lipid production in response to varying growth mode.
    Patidar SK; Mitra M; George B; Soundarya R; Mishra S
    Bioresour Technol; 2014 Nov; 172():32-40. PubMed ID: 25233474
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of CO₂ supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Dec; 126():24-30. PubMed ID: 23073086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using polyethylene glycol as nonionic osmoticum to promote growth and lipid production of marine microalgae Nannochloropsis oculata.
    Lee YH; Yeh YL
    Bioprocess Biosyst Eng; 2014 Aug; 37(8):1669-77. PubMed ID: 24522612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved aqueous extraction of microalgal lipid by combined enzymatic and thermal lysis from wet biomass of Nannochloropsis oceanica.
    Chen L; Li R; Ren X; Liu T
    Bioresour Technol; 2016 Aug; 214():138-143. PubMed ID: 27132220
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organic wastes/by-products as alternative to CO
    Veronesi D; D'Imporzano G; Menin B; Salati S; Adani F
    Bioprocess Biosyst Eng; 2020 Oct; 43(10):1911-1919. PubMed ID: 32447512
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lipid production of microalga Chlorella sorokiniana CY1 is improved by light source arrangement, bioreactor operation mode and deep-sea water supplements.
    Chen CY; Chang HY
    Biotechnol J; 2016 Mar; 11(3):356-62. PubMed ID: 26632521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of eicosapentaenoic acid by Nannochloropsis oculata: Effects of carbon dioxide and glycerol.
    Shene C; Chisti Y; Vergara D; Burgos-Díaz C; Rubilar M; Bustamante M
    J Biotechnol; 2016 Dec; 239():47-56. PubMed ID: 27725210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of magnetic fields and nitrate concentration to optimize the growth and lipid yield of Nannochloropsis oculata.
    Chu FJ; Wan TJ; Pai TY; Lin HW; Liu SH; Huang CF
    J Environ Manage; 2020 Jan; 253():109680. PubMed ID: 31634748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of light-emitting diodes (LEDs) on the accumulation of lipid content using a two-phase culture process with three microalgae.
    Ra CH; Kang CH; Jung JH; Jeong GT; Kim SK
    Bioresour Technol; 2016 Jul; 212():254-261. PubMed ID: 27107342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Utilization of biodiesel-derived glycerol or xylose for increased growth and lipid production by indigenous microalgae.
    Leite GB; Paranjape K; Abdelaziz AEM; Hallenbeck PC
    Bioresour Technol; 2015 May; 184():123-130. PubMed ID: 25466992
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of temperature and substrate concentration on lipid production by Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues (LMBRs).
    Ma X; Zheng H; Huang H; Liu Y; Ruan R
    Appl Biochem Biotechnol; 2014 Oct; 174(4):1631-1650. PubMed ID: 25138600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced lipid production in Chlorella pyrenoidosa by continuous culture.
    Wen X; Geng Y; Li Y
    Bioresour Technol; 2014 Jun; 161():297-303. PubMed ID: 24717322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnesium aminoclay enhances lipid production of mixotrophic Chlorella sp. KR-1 while reducing bacterial populations.
    Kim B; Praveenkumar R; Lee J; Nam B; Kim DM; Lee K; Lee YC; Oh YK
    Bioresour Technol; 2016 Nov; 219():608-613. PubMed ID: 27543952
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of fenamiphos, imidacloprid, and oxamyl pesticides from water by microalgal
    Reyad AGA; Abbassy MA; Marei GIK; Rabea EI; Badawy MEI
    J Environ Sci Health B; 2023; 58(4):345-356. PubMed ID: 37006160
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring nutritional modes of cultivation for enhancing lipid accumulation in microalgae.
    Ratha SK; Babu S; Renuka N; Prasanna R; Prasad RB; Saxena AK
    J Basic Microbiol; 2013 May; 53(5):440-50. PubMed ID: 22736510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of growth and lipid production by Chlorella sp. PCH90, a microalga native to Quebec.
    Abdelaziz AE; Ghosh D; Hallenbeck PC
    Bioresour Technol; 2014 Mar; 156():20-8. PubMed ID: 24472701
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficiency of
    Wang S; Liu J; Li C; Chung BM
    Environ Technol; 2019 Aug; 40(19):2494-2503. PubMed ID: 29466933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.