BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 28057419)

  • 1. Highly efficient and selective leaching of silver from electronic scrap in the base-activated persulfate - ammonia system.
    Hyk W; Kitka K
    Waste Manag; 2017 Feb; 60():601-608. PubMed ID: 28057419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex electronic waste treatment - An effective process to selectively recover copper with solutions containing different ammonium salts.
    Sun ZH; Xiao Y; Sietsma J; Agterhuis H; Yang Y
    Waste Manag; 2016 Nov; 57():140-148. PubMed ID: 27021695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lab scale optimization and two-step sequential bench scale reactor leaching tests for the chemical dissolution of Cu, Au & Ag from waste electrical and electronic equipment (WEEE).
    Tuncuk A
    Waste Manag; 2019 Jul; 95():636-643. PubMed ID: 31351651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study on the recycling of scrap integrated circuits by leaching.
    Lee CH; Tang LW; Popuri SR
    Waste Manag Res; 2011 Jul; 29(7):677-85. PubMed ID: 20837559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.
    Zheng X; Gao W; Zhang X; He M; Lin X; Cao H; Zhang Y; Sun Z
    Waste Manag; 2017 Feb; 60():680-688. PubMed ID: 27993441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective separation of copper over solder alloy from waste printed circuit boards leach solution.
    Kavousi M; Sattari A; Alamdari EK; Firozi S
    Waste Manag; 2017 Feb; 60():636-642. PubMed ID: 27530081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An advanced study on the hydrometallurgical processing of waste computer printed circuit boards to extract their valuable content of metals.
    Birloaga I; Coman V; Kopacek B; Vegliò F
    Waste Manag; 2014 Dec; 34(12):2581-6. PubMed ID: 25242605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Cleaner Process for Selective Recovery of Valuable Metals from Electronic Waste of Complex Mixtures of End-of-Life Electronic Products.
    Sun Z; Xiao Y; Sietsma J; Agterhuis H; Yang Y
    Environ Sci Technol; 2015 Jul; 49(13):7981-8. PubMed ID: 26061274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Final report on the safety assessment of Ammonium, Potassium, and Sodium Persulfate.
    Pang S; Fiume MZ
    Int J Toxicol; 2001; 20 Suppl 3():7-21. PubMed ID: 11766134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiourea leaching gold and silver from the printed circuit boards of waste mobile phones.
    Jing-ying L; Xiu-li X; Wen-quan L
    Waste Manag; 2012 Jun; 32(6):1209-12. PubMed ID: 22386109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of submicron silver powder from scrap low-temperature co-fired ceramic an e-waste: Understanding the leaching kinetics and wet chemistry.
    Swain B; Shin D; Joo SY; Ahn NK; Lee CG; Yoon JH
    Chemosphere; 2018 Mar; 194():793-802. PubMed ID: 29253824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative degradation of propachlor by ferrous and copper ion activated persulfate.
    Liu CS; Shih K; Sun CX; Wang F
    Sci Total Environ; 2012 Feb; 416():507-12. PubMed ID: 22226398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of gold and silver leaching from printed circuit board of cellphones.
    Petter PM; Veit HM; Bernardes AM
    Waste Manag; 2014 Feb; 34(2):475-82. PubMed ID: 24332399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Closed circuit recovery of copper, lead and iron from electronic waste with citrate solutions.
    Torres R; Lapidus GT
    Waste Manag; 2017 Feb; 60():561-568. PubMed ID: 27964914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of diphenylamine by persulfate: Performance optimization, kinetics and mechanism.
    Li SX; Wei D; Mak NK; Cai Z; Xu XR; Li HB; Jiang Y
    J Hazard Mater; 2009 May; 164(1):26-31. PubMed ID: 18774644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study on copper leaching from waste printed circuit boards by typical ionic liquid acids.
    Chen M; Huang J; Ogunseitan OA; Zhu N; Wang YM
    Waste Manag; 2015 Jul; 41():142-7. PubMed ID: 25869844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of base activation of persulfate.
    Furman OS; Teel AL; Watts RJ
    Environ Sci Technol; 2010 Aug; 44(16):6423-8. PubMed ID: 20704244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of gold from waste electrical and electronic equipment (WEEE) using ammonium persulfate.
    Alzate A; López ME; Serna C
    Waste Manag; 2016 Nov; 57():113-120. PubMed ID: 26860423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries.
    Gao W; Liu C; Cao H; Zheng X; Lin X; Wang H; Zhang Y; Sun Z
    Waste Manag; 2018 May; 75():477-485. PubMed ID: 29459203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiosulfate leaching of gold from waste mobile phones.
    Ha VH; Lee JC; Jeong J; Hai HT; Jha MK
    J Hazard Mater; 2010 Jun; 178(1-3):1115-9. PubMed ID: 20149533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.