These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 28057526)

  • 21. Effect of cold storage and freezing on the biomechanical properties of swine growth plate explants.
    Ménard AL; Soulisse C; Raymond P; Londono I; Villemure I
    J Biomech Eng; 2014 Apr; 136(4):. PubMed ID: 24337235
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microstructural and compositional contributions towards the mechanical behavior of aging human bone measured by cyclic and impact reference point indentation.
    Abraham AC; Agarwalla A; Yadavalli A; Liu JY; Tang SY
    Bone; 2016 Jun; 87():37-43. PubMed ID: 27021150
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exercise-induced changes in the cortical bone of growing mice are bone- and gender-specific.
    Wallace JM; Rajachar RM; Allen MR; Bloomfield SA; Robey PG; Young MF; Kohn DH
    Bone; 2007 Apr; 40(4):1120-7. PubMed ID: 17240210
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aging of bone tissue: mechanical properties.
    Burstein AH; Reilly DT; Martens M
    J Bone Joint Surg Am; 1976 Jan; 58(1):82-6. PubMed ID: 1249116
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomechanical properties and thermal characteristics of frozen versus thawed whole bone.
    Brazda IJ; Reeves J; Langohr GDG; Crookshank MC; Schemitsch EH; Zdero R
    Proc Inst Mech Eng H; 2020 Aug; 234(8):874-883. PubMed ID: 32515277
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interrelationships between electrical, mechanical and hydration properties of cortical bone.
    Unal M; Cingoz F; Bagcioglu C; Sozer Y; Akkus O
    J Mech Behav Biomed Mater; 2018 Jan; 77():12-23. PubMed ID: 28888142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reference point indentation is insufficient for detecting alterations in traditional mechanical properties of bone under common experimental conditions.
    Krege JB; Aref MW; McNerny E; Wallace JM; Organ JM; Allen MR
    Bone; 2016 Jun; 87():97-101. PubMed ID: 27072518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Moisture Content and Loading Profile on Changing Properties of Bone Micro-Biomechanical Characteristics.
    Wang B; Chen R; Chen F; Dong J; Wu Z; Wang H; Yang Z; Wang F; Wang J; Yang X; Feng Y; Huang Z; Lei W; Liu H
    Med Sci Monit; 2018 Apr; 24():2252-2258. PubMed ID: 29656299
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In Vitro-Induced High Sugar Environments Deteriorate Human Cortical Bone Elastic Modulus and Fracture Toughness.
    Merlo K; Aaronson J; Vaidya R; Rezaee T; Chalivendra V; Karim L
    J Orthop Res; 2020 May; 38(5):972-983. PubMed ID: 31793028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bone Aging by Advanced Glycation End Products: A Multiscale Mechanical Analysis.
    Ganeko K; Masaki C; Shibata Y; Mukaibo T; Kondo Y; Nakamoto T; Miyazaki T; Hosokawa R
    J Dent Res; 2015 Dec; 94(12):1684-90. PubMed ID: 26310723
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical and material properties of cortical and trabecular bone from cannabinoid receptor-1-null (Cnr1(-/-)) mice.
    Khalid AB; Goodyear SR; Ross RA; Aspden RM
    Med Eng Phys; 2016 Oct; 38(10):1044-54. PubMed ID: 27401043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone.
    Skedros JG; Dayton MR; Sybrowsky CL; Bloebaum RD; Bachus KN
    J Exp Biol; 2006 Aug; 209(Pt 15):3025-42. PubMed ID: 16857886
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of non-enzymatic glycation on cancellous bone fragility.
    Tang SY; Zeenath U; Vashishth D
    Bone; 2007 Apr; 40(4):1144-51. PubMed ID: 17257914
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoindentation and whole-bone bending estimates of material properties in bones from the senescence accelerated mouse SAMP6.
    Silva MJ; Brodt MD; Fan Z; Rho JY
    J Biomech; 2004 Nov; 37(11):1639-46. PubMed ID: 15388305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changing the structurally effective mineral content of bone with in vitro fluoride treatment.
    DePaula CA; Abjornson C; Pan Y; Kotha SP; Koike K; Guzelsu N
    J Biomech; 2002 Mar; 35(3):355-61. PubMed ID: 11858811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomechanical investigation of the effect of high hydrostatic pressure treatment on the mechanical properties of human bone.
    Steinhauser E; Diehl P; Hadaller M; Schauwecker J; Busch R; Gradinger R; Mittelmeier W
    J Biomed Mater Res B Appl Biomater; 2006 Jan; 76(1):130-5. PubMed ID: 16044428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential effects of bone structural and material properties on bone competence in C57BL/6 and C3H/He inbred strains of mice.
    Voide R; van Lenthe GH; Müller R
    Calcif Tissue Int; 2008 Jul; 83(1):61-9. PubMed ID: 18545865
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new tool to assess the mechanical properties of bone due to collagen degradation.
    Wynnyckyj C; Omelon S; Savage K; Damani M; Chachra D; Grynpas MD
    Bone; 2009 May; 44(5):840-8. PubMed ID: 19150659
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of androgens on the mechanical properties of primate bone.
    Kasra M; Grynpas MD
    Bone; 1995 Sep; 17(3):265-70. PubMed ID: 8541140
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural and Mechanical Improvements to Bone Are Strain Dependent with Axial Compression of the Tibia in Female C57BL/6 Mice.
    Berman AG; Clauser CA; Wunderlin C; Hammond MA; Wallace JM
    PLoS One; 2015; 10(6):e0130504. PubMed ID: 26114891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.