These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 28057679)

  • 1. SPOT-ligand 2: improving structure-based virtual screening by binding-homology search on an expanded structural template library.
    Litfin T; Zhou Y; Yang Y
    Bioinformatics; 2017 Apr; 33(8):1238-1240. PubMed ID: 28057679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPOT-Ligand: Fast and effective structure-based virtual screening by binding homology search according to ligand and receptor similarity.
    Yang Y; Zhan J; Zhou Y
    J Comput Chem; 2016 Jul; 37(18):1734-9. PubMed ID: 27074979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks.
    Hanson J; Yang Y; Paliwal K; Zhou Y
    Bioinformatics; 2017 Mar; 33(5):685-692. PubMed ID: 28011771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LS-align: an atom-level, flexible ligand structural alignment algorithm for high-throughput virtual screening.
    Hu J; Liu Z; Yu DJ; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2209-2218. PubMed ID: 29462237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility.
    Heffernan R; Yang Y; Paliwal K; Zhou Y
    Bioinformatics; 2017 Sep; 33(18):2842-2849. PubMed ID: 28430949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast and accurate non-sequential protein structure alignment using a new asymmetric linear sum assignment heuristic.
    Brown P; Pullan W; Yang Y; Zhou Y
    Bioinformatics; 2016 Feb; 32(3):370-7. PubMed ID: 26454279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PoLi: A Virtual Screening Pipeline Based on Template Pocket and Ligand Similarity.
    Roy A; Srinivasan B; Skolnick J
    J Chem Inf Model; 2015 Aug; 55(8):1757-70. PubMed ID: 26225536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly accurate sequence-based prediction of half-sphere exposures of amino acid residues in proteins.
    Heffernan R; Dehzangi A; Lyons J; Paliwal K; Sharma A; Wang J; Sattar A; Zhou Y; Yang Y
    Bioinformatics; 2016 Mar; 32(6):843-9. PubMed ID: 26568622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FINDSITE
    Zhou H; Cao H; Skolnick J
    J Chem Inf Model; 2018 Nov; 58(11):2343-2354. PubMed ID: 30278128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand-based virtual screening under partial shape constraints.
    von Behren MM; Rarey M
    J Comput Aided Mol Des; 2017 Apr; 31(4):335-347. PubMed ID: 28315995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the errors of predicted local backbone angles and non-local solvent- accessibilities of proteins by deep neural networks.
    Gao J; Yang Y; Zhou Y
    Bioinformatics; 2016 Dec; 32(24):3768-3773. PubMed ID: 27551104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FRAGSITE: A Fragment-Based Approach for Virtual Ligand Screening.
    Zhou H; Cao H; Skolnick J
    J Chem Inf Model; 2021 Apr; 61(4):2074-2089. PubMed ID: 33724022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SABRE: ligand/structure-based virtual screening approach using consensus molecular-shape pattern recognition.
    Wei NN; Hamza A
    J Chem Inf Model; 2014 Jan; 54(1):338-46. PubMed ID: 24328054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alloscore: a method for predicting allosteric ligand-protein interactions.
    Li S; Shen Q; Su M; Liu X; Lu S; Chen Z; Wang R; Zhang J
    Bioinformatics; 2016 May; 32(10):1574-6. PubMed ID: 26803160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. InterLig: improved ligand-based virtual screening using topologically independent structural alignments.
    Mirabello C; Wallner B
    Bioinformatics; 2020 May; 36(10):3266-3267. PubMed ID: 32049311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HybridSim-VS: a web server for large-scale ligand-based virtual screening using hybrid similarity recognition techniques.
    Shang J; Dai X; Li Y; Pistolozzi M; Wang L
    Bioinformatics; 2017 Nov; 33(21):3480-3481. PubMed ID: 29036579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure selection for protein kinase docking and virtual screening: homology models or crystal structures?
    Rockey WM; Elcock AH
    Curr Protein Pept Sci; 2006 Oct; 7(5):437-57. PubMed ID: 17073695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AutoDock Bias: improving binding mode prediction and virtual screening using known protein-ligand interactions.
    Arcon JP; Modenutti CP; Avendaño D; Lopez ED; Defelipe LA; Ambrosio FA; Turjanski AG; Forli S; Marti MA
    Bioinformatics; 2019 Oct; 35(19):3836-3838. PubMed ID: 30825370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. mRAISE: an alternative algorithmic approach to ligand-based virtual screening.
    von Behren MM; Bietz S; Nittinger E; Rarey M
    J Comput Aided Mol Des; 2016 Aug; 30(8):583-94. PubMed ID: 27565795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RADER: a RApid DEcoy Retriever to facilitate decoy based assessment of virtual screening.
    Wang L; Pang X; Li Y; Zhang Z; Tan W
    Bioinformatics; 2017 Apr; 33(8):1235-1237. PubMed ID: 28011765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.