These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 28057689)

  • 41. First record of an Icacinaceae Miers fossil flower from Le Quesnoy (Ypresian, France) amber.
    Del Rio C; Haevermans T; De Franceschi D
    Sci Rep; 2017 Sep; 7(1):11099. PubMed ID: 28894196
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exceptional evolutionary lability of flower-like inflorescences (pseudanthia) in Apiaceae subfamily Apioideae.
    Baczyński J; Sauquet H; Spalik K
    Am J Bot; 2022 Mar; 109(3):437-455. PubMed ID: 35112711
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional diversification of duplicated CYC2 clade genes in regulation of inflorescence development in Gerbera hybrida (Asteraceae).
    Juntheikki-Palovaara I; Tähtiharju S; Lan T; Broholm SK; Rijpkema AS; Ruonala R; Kale L; Albert VA; Teeri TH; Elomaa P
    Plant J; 2014 Sep; 79(5):783-96. PubMed ID: 24923429
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Defining the limits of flowers: the challenge of distinguishing between the evolutionary products of simple versus compound strobili.
    Rudall PJ; Bateman RM
    Philos Trans R Soc Lond B Biol Sci; 2010 Feb; 365(1539):397-409. PubMed ID: 20047867
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantitative developmental analysis of homeotic changes in the inflorescence of Philodendron (Araceae).
    Barabé D; Lacroix C; Jeune B
    Ann Bot; 2008 May; 101(7):1027-34. PubMed ID: 18356291
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Study on inflorescences microscopic characteristics of five wild medicinal plants from Chrysanthemum genus in Anhui].
    Yang J; Zhen LP
    Zhong Yao Cai; 2013 Jun; 36(6):902-7. PubMed ID: 24380272
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of mammalian herbivory on inflorescence architecture in ornithophilous Babiana (Iridaceae): implications for the evolution of a bird perch.
    de Waal C; Barrett SC; Anderson B
    Am J Bot; 2012 Jun; 99(6):1096-103. PubMed ID: 22615309
    [TBL] [Abstract][Full Text] [Related]  

  • 48. New insights into the regulation of inflorescence architecture.
    Teo ZW; Song S; Wang YQ; Liu J; Yu H
    Trends Plant Sci; 2014 Mar; 19(3):158-65. PubMed ID: 24315403
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phylogenetic relationships of the Santalales and relatives.
    Nickrent DL; Franchina CR
    J Mol Evol; 1990 Oct; 31(4):294-301. PubMed ID: 2124277
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Flower-like terminal structures in racemose inflorescences: a tool in morphogenetic and evolutionary research.
    Sokoloff D; Rudall PJ; Remizowa M
    J Exp Bot; 2006; 57(13):3517-30. PubMed ID: 17005921
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Floral initiation and inflorescence architecture: a comparative view.
    Benlloch R; Berbel A; Serrano-Mislata A; Madueño F
    Ann Bot; 2007 Sep; 100(3):659-76. PubMed ID: 17679690
    [TBL] [Abstract][Full Text] [Related]  

  • 52. What makes a fig: insights from a comparative analysis of inflorescence morphogenesis in Moraceae.
    Leite VG; Kjellberg F; Pereira RAS; Teixeira SP
    Ann Bot; 2021 Apr; 127(5):621-631. PubMed ID: 33253383
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Floral ontogeny in Astragalus compactus (Leguminosae: Papilionoideae: Galegeae): variable occurrence of bracteoles and variable patterns of sepal initiation.
    Naghiloo S; Dadpour MR; Movafeghi A
    Planta; 2012 Apr; 235(4):793-805. PubMed ID: 22057625
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evolution of growth habit, inflorescence architecture, flower size, and fruit type in Rubiaceae: its ecological and evolutionary implications.
    Razafimandimbison SG; Ekman S; McDowell TD; Bremer B
    PLoS One; 2012; 7(7):e40851. PubMed ID: 22815842
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Floral anatomy and vegetative development in Ceratophyllum demersum: a morphological picture of an "unsolved" plant.
    Iwamoto A; Izumidate R; Ronse De Craene LP
    Am J Bot; 2015 Oct; 102(10):1578-89. PubMed ID: 26419811
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure and development of 'witches' broom' galls in reproductive organs of Byrsonima sericea (Malpighiaceae) and their effects on host plants.
    Guimarães AL; Neufeld PM; Santiago-Fernandes LD; Vieira AC
    Plant Biol (Stuttg); 2015 Mar; 17(2):493-504. PubMed ID: 25124715
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Long-day effects on the terminal inflorescence development of a photoperiod-sensitive soybean [Glycine max (L.) Merr.] variety.
    Jiang Y; Wu C; Zhang L; Hu P; Hou W; Zu W; Han T
    Plant Sci; 2011 Mar; 180(3):504-10. PubMed ID: 21421398
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Grass meristems II: inflorescence architecture, flower development and meristem fate.
    Tanaka W; Pautler M; Jackson D; Hirano HY
    Plant Cell Physiol; 2013 Mar; 54(3):313-24. PubMed ID: 23378448
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Brassicaceae flowers: diversity amid uniformity.
    Nikolov LA
    J Exp Bot; 2019 May; 70(10):2623-2635. PubMed ID: 30824938
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inflorescence structure and control of flowering time and duration by light in buckwheat (Fagopyrum esculentum Moench).
    Quinet M; Cawoy V; Lefèvre I; Van Miegroet F; Jacquemart AL; Kinet JM
    J Exp Bot; 2004 Jul; 55(402):1509-17. PubMed ID: 15208346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.