BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 28057858)

  • 1. ProtASR: An Evolutionary Framework for Ancestral Protein Reconstruction with Selection on Folding Stability.
    Arenas M; Weber CC; Liberles DA; Bastolla U
    Syst Biol; 2017 Nov; 66(6):1054-1064. PubMed ID: 28057858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum-Likelihood Phylogenetic Inference with Selection on Protein Folding Stability.
    Arenas M; Sánchez-Cobos A; Bastolla U
    Mol Biol Evol; 2015 Aug; 32(8):2195-207. PubMed ID: 25837579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Influence of Protein Stability on Sequence Evolution: Applications to Phylogenetic Inference.
    Bastolla U; Arenas M
    Methods Mol Biol; 2019; 1851():215-231. PubMed ID: 30298399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consequences of Substitution Model Selection on Protein Ancestral Sequence Reconstruction.
    Del Amparo R; Arenas M
    Mol Biol Evol; 2022 Jul; 39(7):. PubMed ID: 35789388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A protein evolution model with independent sites that reproduces site-specific amino acid distributions from the Protein Data Bank.
    Bastolla U; Porto M; Roman HE; Vendruscolo M
    BMC Evol Biol; 2006 May; 6():43. PubMed ID: 16737532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of ancestral protein sequences and its applications.
    Cai W; Pei J; Grishin NV
    BMC Evol Biol; 2004 Sep; 4():33. PubMed ID: 15377393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the past and the future of protein evolution with ancestral sequence reconstruction: the 'retro' approach to protein engineering.
    Gumulya Y; Gillam EM
    Biochem J; 2017 Jan; 474(1):1-19. PubMed ID: 28008088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A class frequency mixture model that adjusts for site-specific amino acid frequencies and improves inference of protein phylogeny.
    Wang HC; Li K; Susko E; Roger AJ
    BMC Evol Biol; 2008 Dec; 8():331. PubMed ID: 19087270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein evolution along phylogenetic histories under structurally constrained substitution models.
    Arenas M; Dos Santos HG; Posada D; Bastolla U
    Bioinformatics; 2013 Dec; 29(23):3020-8. PubMed ID: 24037213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consequences of Genetic Recombination on Protein Folding Stability.
    Del Amparo R; González-Vázquez LD; Rodríguez-Moure L; Bastolla U; Arenas M
    J Mol Evol; 2023 Feb; 91(1):33-45. PubMed ID: 36463317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methodologies for Microbial Ancestral Sequence Reconstruction.
    Arenas M
    Methods Mol Biol; 2022; 2569():283-303. PubMed ID: 36083454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ancestral sequence reconstruction: accounting for structural information by averaging over replacement matrices.
    Moshe A; Pupko T
    Bioinformatics; 2019 Aug; 35(15):2562-2568. PubMed ID: 30590382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixture models of nucleotide sequence evolution that account for heterogeneity in the substitution process across sites and across lineages.
    Jayaswal V; Wong TK; Robinson J; Poladian L; Jermiin LS
    Syst Biol; 2014 Sep; 63(5):726-42. PubMed ID: 24927722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ancestral sequence reconstruction in primate mitochondrial DNA: compositional bias and effect on functional inference.
    Krishnan NM; Seligmann H; Stewart CB; De Koning AP; Pollock DD
    Mol Biol Evol; 2004 Oct; 21(10):1871-83. PubMed ID: 15229290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection among site-dependent structurally constrained substitution models of protein evolution by approximate Bayesian computation.
    Ferreiro D; Branco C; Arenas M
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38374231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An amino acid substitution-selection model adjusts residue fitness to improve phylogenetic estimation.
    Wang HC; Susko E; Roger AJ
    Mol Biol Evol; 2014 Apr; 31(4):779-92. PubMed ID: 24441033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A thermodynamic model of protein structure evolution explains empirical amino acid substitution matrices.
    Norn C; André I; Theobald DL
    Protein Sci; 2021 Oct; 30(10):2057-2068. PubMed ID: 34218472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topiary: Pruning the manual labor from ancestral sequence reconstruction.
    Orlandi KN; Phillips SR; Sailer ZR; Harman JL; Harms MJ
    Protein Sci; 2023 Feb; 32(2):e4551. PubMed ID: 36565302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alignment-Integrated Reconstruction of Ancestral Sequences Improves Accuracy.
    Aadland K; Kolaczkowski B
    Genome Biol Evol; 2020 Sep; 12(9):1549-1565. PubMed ID: 32785673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of mutation bias and hydrophobicity on the substitution rates and sequence entropies of protein evolution.
    Jiménez-Santos MJ; Arenas M; Bastolla U
    PeerJ; 2018; 6():e5549. PubMed ID: 30310736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.